Abstract

BackgroundPrenatal alcohol exposure (PAE) is associated with a range of adverse offspring neurodevelopmental outcomes. Several studies suggest that PAE modifies DNA methylation in offspring cells and tissues, providing evidence for a potential mechanistic link to Fetal Alcohol Spectrum Disorder (FASD). We systematically reviewed existing evidence on the extent to which maternal alcohol use during pregnancy is associated with offspring DNA methylation.MethodsA systematic literature search was conducted across five online databases according to Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. PubMed, Web of Science, EMBASE, Google Scholar and CINAHL Databases were searched for articles relating to PAE in placental mammals. Data were extracted from each study and the Risk of Bias in Non-Randomized Studies of Interventions (ROBINS-I) was used to assess the potential for bias in human studies.ResultsForty-three articles were identified for inclusion. Twenty-six animal studies and 16 human studies measured offspring DNA methylation in various tissues using candidate gene analysis, methylome-wide association studies (MWAS), or total nuclear DNA methylation content. PAE dose and timing varied between studies. Risk of bias was deemed high in nearly all human studies. There was insufficient evidence in human and animal studies to support global disruption of DNA methylation from PAE. Inconclusive evidence was found for hypomethylation at IGF2/H19 regions within somatic tissues. MWAS assessing PAE effects on offspring DNA methylation showed inconsistent evidence. There was some consistency in the relatively small number of MWAS conducted in populations with FASD. Meta-analyses could not be conducted due to significant heterogeneity between studies.ConclusionConsidering heterogeneity in study design and potential for bias, evidence for an association between PAE and offspring DNA methylation was inconclusive. Some reproducible associations were observed in populations with FASD although the limited number of these studies warrants further research.Trail Registration: This review is registered with PROSPERO (registration number: CRD42020167686).

Highlights

  • Prenatal alcohol exposure (PAE) is associated with a range of adverse offspring neurodevelopmental outcomes

  • We considered whether changes in the DNA methylation from PAE were dependent on the tissue or cell type

  • Alcohol consumption in pregnancy has been linked to changes in offspring DNA methylation, which may be mechanistically important in mediating the harmful effects of alcohol on neurodevelopment

Read more

Summary

Introduction

Prenatal alcohol exposure (PAE) is associated with a range of adverse offspring neurodevelopmental outcomes. Several studies suggest that PAE modifies DNA methylation in offspring cells and tissues, providing evidence for a potential mechanistic link to Fetal Alcohol Spectrum Disorder (FASD). We systematically reviewed existing evidence on the extent to which maternal alcohol use during pregnancy is associated with offspring DNA methylation. Alcohol use during pregnancy is a preventable cause of offspring neurodevelopmental impairments. The timing, dose and frequency of consumption is associated with the severity of prenatal alcohol exposure (PAE) on fetal development [2]. PAE can cause Fetal Alcohol Spectrum Disorder (FASD), a diagnostic term that encompasses a spectrum of physical, cognitive, behavioural and neurodevelopmental abnormalities with life-long health consequences [3]. Improvements in screening and diagnosis are research priorities [10] in order to facilitate timely and appropriate interventions, and for this to occur a clearer understanding of mechanisms is required

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.