Abstract

To describe further the metabolism of messenger ribonucleic acid (mRNA) in mouse kidney, we examined newly synthesized mRNA deficient in poly(adenylate) [poly(A)]. Approximately 50% of renal polysomal mRNA that labeled selectively in the presence of the pyrimidine analogue 5-fluoroorotic acid lacks or is deficient in poly(A) as defined by its ability to bind to poly(A) affinity columns. Nearly one-half of this poly(A)-deficient mRNA is associated uniquely with a cellular membrane fraction detected by sedimentation of renal cytoplasm in sucrose density gradients containing EDTA and nonionic detergents. Poly(A+) mRNA and poly(A)-deficient mRNA [poly(A-) mRNA] have similar modal sedimentation coefficients (20-22 S) and similar cytoplasmic distribution. Although 95% of newly synthesized poly(A+) mRNA is released in 10 mM EDTA as 20-90 S ribonucleoproteins from polysomes greater than 80 S, only 55% of poly(A)-deficient mRNA is released under the same conditions. Poly(A)-deficient mRNA recovered from greater than 80 S ribonucleoproteins resistant to EDTA treatment lacks ribosomal RNA, is similar in size to poly(A+) mRNA, and is associated with membranous structures, since 70% of poly(A)-deficient mRNA in EDTA-resistant ribonucleoproteins is released into the 20-80 S region by solubilizing membranes with 1% Triton X-100. These membrane-associated renal poly(A-) mRNAs could have unique coding or regulatory functions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.