Abstract

Current evidence is controversial in the association between peripheral lymphocyte levels and the progression and mortality of Corona Virus Disease 2019 (COVID-19), and this meta-analysis aimed to clarify the association. A systematic search was conducted in public databases to identify all relevant studies, and the study-specific odds ratio (OR) and 95% confidence intervals (CI) were pooled. Finally, 16 studies were identified with a total of 1,873 progressive COVID-19 cases and 5,177 stable COVID-19 cases. In COVID-19 progression, lymphocyte levels showed a significant negative correlation (OR: 0.68, 95% CI: 0.51–0.89), but it was not significant in the subsets of CD3+ T cells (OR: 0.97, 95% CI: 0.93–1.02), CD4+ T cells (OR: 0.93, 95% CI: 0.80–1.08), CD8+ T cells (OR: 0.96, 95% CI: 0.92–1.00), B cells (OR: 0.98, 95% CI: 0.92–1.04), or NK cells (OR: 0.80, 95% CI: 0.61–1.04). In COVID-19 mortality, lymphocyte levels showed a significant negative correlation (OR: 0.41, 95% CI: 0.20–0.85), but it was not significant in the subsets of CD3+ T cells (OR: 0.95, 95% CI: 0.86–1.05), CD4+ T cells (OR: 1.06, 95% CI: 0.86–1.31), CD8+ T cells (OR: 0.38, 95% CI: 0.14–1.01), B cells (OR: 0.98, 95% CI: 0.92–1.04), or NK cells (OR: 0.80, 95% CI: 0.61–1.04). In conclusion, current evidence suggests a significant negative association of peripheral lymphocyte levels with COVID-19 progression and mortality, but it was not significant in the subsets of CD3+ T cells, CD4+ T cells, CD8+ T cells, B cells, and NK cells.

Highlights

  • In December 2019, an outbreak of pneumonia of unknown cause occurred in Wuhan, and rapidly spread throughout the world [1]

  • The studies were included if they met the following criteria: (i) all hospitalized patients discussed had a definite diagnosis of COVID-19; (ii) the patients discussed were divided into the progressive group [e.g., admission to an intensive care unit (ICU), the use of mechanical ventilation, or death] or the stable group during the hospitalization; (iii) the study evaluated the association of the baseline lymphocytes levels or the main subtypes of CD3+ T cells, CD4+ T cells, CD8+ T cells, B cells, or NK cells with the COVID-19 progression or mortality; (iv) presented relative risk (RR), odds ratio (OR), or hazard ratio (HR) estimates with 95% confidence intervals (CI)

  • Severe cases had a lower level of lymphocytes, CD4+ T cells, CD8+ T cells, and B cells than mild cases, which was similar in severe acute respiratory syndrome (SARS) [20, 21]

Read more

Summary

Introduction

In December 2019, an outbreak of pneumonia of unknown cause occurred in Wuhan, and rapidly spread throughout the world [1]. The pathogen was confirmed to be a distinct clade of the βcoronavirus associated with human severe acute respiratory syndrome (SARS) [2]. The novel virus was officially named SARS-CoV-2, with the disease termed COVID-19. Epidemiological data demonstrated high infectivity in SARS-CoV-2 and high mortality in multiple cohorts. It was important to identify laboratory parameters capable of discriminating the COVID-19 patients at high risk of progression or mortality, which would help physicians to provide timely intervention and improve the patients’ prognosis

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call