Abstract
Few new treatments tested in phase 3 cancer randomized clinical trials show an overall survival benefit. Although understanding whether the benefits are consistent among all patient groups is critical for informing guideline care, individual trials are designed to assess the benefits of experimental treatments among all patients and are too small to reliably determine whether treatment benefits apply to demographic or insurance subgroups. To systematically examine whether positive treatment effects in cancer randomized clinical trials apply to specific demographic or insurance subgroups. Cohort study of pooled patient-level data from 10 804 patients in SWOG Cancer Research Network clinical treatment trials reported from 1985 onward with superior overall survival for those receiving experimental treatment. Patients were enrolled from 1984 to 2012. Maximum follow-up was 5 years. Interaction tests were used to assess whether hazard ratios (HRs) for death comparing standard group vs experimental group treatments were associated with age (≥65 vs <65 years), race/ethnicity (minority vs nonminority populations), sex, or insurance status among patients younger than 65 years (Medicaid or no insurance vs private insurance) in multivariable Cox regression frailty models. Progression- or relapse-free survival was also examined. Data analyses were conducted from August 2019 to February 2020. In total, 19 trials including 10 804 patients were identified that reported superior overall survival for patients randomized to experimental treatment. Patients were predominantly younger than 65 years (67.3%) and female (66.3%); 11.4% were black patients, and 5.7% were Hispanic patients. There was evidence of added survival benefits associated with receipt of experimental therapy for all groups except for patients with Medicaid or no insurance (HR, 1.23; 95% CI, 0.97-1.56; P = .09) compared with those with private insurance (HR, 1.66; 95% CI, 1.44-1.92; P < .001; P = .03 for interaction). Receipt of experimental treatment was associated with reduced added overall survival benefits in patients 65 years or older (HR, 1.21; 95% CI, 1.11-1.32; P < .001) compared with patients younger than 65 years (HR, 1.41; 95% CI, 1.30-1.53; P < .001; P = .01 for interaction), although both older and younger patients appeared to strongly benefit from receipt of experimental treatment. The progression- or relapse-free survival HRs did not differ by age, sex, or race/ethnicity but differed between patients with Medicaid or no insurance (HR, 1.32; 95% CI, 1.06-1.64; P = .01) vs private insurance (HR, 1.74; 95% CI, 1.54-1.97; P < .001; P = .03 for interaction). Patients with Medicaid or no insurance may have smaller added benefits from experimental therapies compared with standard treatments in clinical trials. A better understanding of the quality of survivorship care that patients with suboptimal insurance receive, including supportive care and posttreatment care, could help establish how external factors may affect outcomes for these patients.
Highlights
Phase 3 trials are designed to evaluate the efficacy of new treatments or interventions
There was evidence of added survival benefits associated with receipt of experimental therapy for all groups except for patients with Medicaid or no insurance (HR, 1.23; 95% CI, 0.97-1.56; P = .09) compared with those with private insurance (HR, 1.66; 95% CI, 1.44-1.92; P < .001; P = .03 for interaction)
Receipt of experimental treatment was associated with reduced added overall survival benefits in patients 65 years or older (HR, 1.21; 95% CI, 1.11-1.32; P < .001) compared with patients younger than 65 years (HR, 1.41; 95% CI, 1.30-1.53; P < .001; P = .01 for interaction), both older and younger patients appeared to strongly benefit from receipt of experimental treatment
Summary
Phase 3 trials are designed to evaluate the efficacy of new treatments or interventions. Trials with positive results—especially those with a survival end point—often establish new standards of care.[1] phase 3 trials are typically designed to examine their primary end point for all patients combined and lack statistical power to show that the benefit of the experimental treatment consistently applies to major demographic, socioeconomic, and clinical subgroups.[2,3] In oncology, this is critical to determine because treatment benefits could be smaller in disadvantaged groups at potentially higher risk of noncancer-related deaths and with more limited access to health care resources. The generalizability of the treatment effects to these subgroups is often assumed, and few, if any, distinctions within demographic or socioeconomic subgroups are made in cancer treatment guidelines
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.