Abstract

Platelet-activating-factor (PAF) is a lipid inflammatory mediator implicated in liver disease. Its main biosynthetic enzymes are cytidine diphosphate (CDP)-choline: 1-alkyl-2-acetyl-sn-glycerol-cholinephosphotransferase (PAF-CPT) and acetyl-coenzyme A: lyso-PAF-acetyltransferases (Lyso-PAF-AT). At the same time, PAF acetylhydrolase (PAF-AH) and lipoprotein-associated phospholipase A2 (Lp-PLA2 ) degrade PAF. To explore the relation of PAF metabolism with liver diseases and non-alcoholic fatty liver disease, as reflected by the fatty liver index (FLI). In 106 healthy volunteers, PAF concentration, the activity of its metabolic enzymes and gamma-glutamyl transferase (GGT) were measured in whole blood, leukocytes and serum, respectively and the FLI was calculated. Partial correlations and linear regression models were used. In males, serum GGT activity was positively correlated with abdominal fat (as assessed by analysis of a manually defined region of interest in dual-energy X-ray absorptiometry), triacylglycerols, bound-PAF and Lp-PLA2 , while the FLI was positively correlated with Lp-PLA2 activity. In females, serum GGT activity was negatively associated with high-density lipoprotein cholesterol (HDL-C) (age adjusted correlations, all p<0.05). Lp-PLA2 was a significant determinant of serum GGT activity in males after controlling for age, low- density lipoprotein cholesterol (LDL-C) and abdominal fat. The addition of bound-PAF in the model significantly increased the explained variance of serum GGT activity (total variance explanation 30%). Bound-PAF and Lp-PLA2 activity predicted serum GGT activity while Lp-PLA2 was also related to FLI. Our findings shed light on the metabolic pathways linking Lp-PLA2 to other atherosclerosis and/or oxidative markers, such as HDL-C, LDL-C, GGT and FLI and underline the important role of PAF.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call