Abstract

Cancer-related fatigue (CRF) is characterized by a lack of energy, and mitochondrial dysfunction is postulated to contribute to its etiology. This prospective cohort study assesses the self-reported fatigue levels of early-stage breast cancer patients using the validated Multi-Dimensional Fatigue Symptom Inventory–Short Form (MFSI-SF) and blood samples drawn at three time points: before treatment, approximately 6 weeks, and 12 weeks after the initiation of chemotherapy. The aim of this study is to evaluate mitochondrial measures with CRF, over the course of chemotherapy using mitochondrial DNA (mtDNA content) and displacement loop (D-loop) region sequence variations at nucleotide positions 303, 489 and 514. The relative mtDNA copy number was determined via real-time quantitative polymerase chain reaction and compared between study time points and D-loop sequence variants. The association of mtDNA content with MFSI-SF total and sub-domain scores was analyzed in a sample of 155 patients (mean age ± SD: 51.7 ± 8.8 years). The median mtDNA content decreased over 12 weeks after the initiation of chemotherapy (p < 0.001). Baseline mtDNA content was lower for nucleotide position 303 in sequence variations than for the reference sequence (67.2 copies vs 79.1 copies, p = 0.03). Physical fatigue negatively correlated with mtDNA content in both unadjusted (β = −0.0075, p = 0.048) and adjusted models (β = −0.0062, p = 0.042), accounting for age, anxiety, insomnia, haemoglobin levels and body mass index. Our findings add to the literature indicating that mitochondrial function serves as an important target for mitigating CRF.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call