Abstract

BackgroundPolycystic ovary syndrome (PCOS) is a common reproductive endocrine disorder characterized by obesity, hyperandrogenism, and insulin resistance (IR). MicroRNAs (miRNAs) are small noncoding RNA associated with ovarian follicle development and female fertility. The objective of this study was to investigate the role of miRNA- 320 and its target gene endothelin-1 (ET-1) as a noninvasive biomarker of PCOS and to evaluate its possible relationship with IR as well as clinic-morphological features of PCOS.MethodsCase-control study enrolled 60 patients with PCOS and 40 control group. We subdivided our PCOS women according to homeostasis model assessments of insulin resistance (HOMA-IR) to PCOS women with and without IR.ET-1 levels were measured by ELISA. We estimated the serum expression level of miRNA- 320 by real-time polymerase chain reaction.ResultsOur results revealed that serum miR-320 expression level was lower in PCOS patients compared to controls, in particular, PCOS women with IR. Moreover, it was negatively correlated to its target gene; ET-I as well as fasting serum insulin (FSI), HOMA-IR, PCOS phenotype; hirsutism score, ovarian volume and antral follicle count (AFC). In the PCOS group, linear regression analysis revealed that only hirsutism and HOMA-IR was the main predictor of expression levels of miRNA − 320 among other clinical and laboratory biomarkers of PCOS. The sensitivity and specificity of serum miR-320 expression levels in diagnosis PCOS was 80, and 97.5% respectively.ConclusionThe Expression serum levels of miR-320 were lower in PCOS compared to control and it could be a noninvasive diagnostic biomarker of PCOS.

Highlights

  • Compelling evidence suggests that polycystic ovary syndrome (PCOS) is the commonest reproductive endocrine disease of women as affecting 5–10% of women in reproductive age [1]

  • Control and Polycystic ovary syndrome (PCOS) patients were matched for age and gender

  • Linear regression analysis with expression levels of miRNA − 320 as the dependent variable in PCOS groups In the PCOS group, linear regression analysis revealed that only hirsutism and HOMA-insulin resistance (IR) was the main predictor of expression levels of miRNA − 320 among other clinical and laboratory biomarkers of PCOS (Table 4)

Read more

Summary

Introduction

Compelling evidence suggests that polycystic ovary syndrome (PCOS) is the commonest reproductive endocrine disease of women as affecting 5–10% of women in reproductive age [1]. Several lines of evidence indicate that PCOS patients suffer from metabolic disorders, which is manifested by obesity, type 2 diabetes. MicroRNAs (miRNAs) are small, non-coding RNAs (19–23 nucleotides) that inhibit translation and/or direct mRNA degradation, in addition they have an autocrine and endocrine regulatory function of gene expression and involved in the pathogenesis of complex diseases including obesity [4], T2DM [5], and PCOS [6, 7]. MiR-320 has been shown to be involved in growth, proliferation, and the cell cycle by targeting different genes in different cell lines [8]. Mounting evidence indicates that MiR-320 target gene; ET is a bioactive peptide produced by endothelial cells that can promote cell mitosis, participate in tumor growth and induce mitosis in tumor growth [9]. The objective of this study was to investigate the role of miRNA- 320 and its target gene endothelin-1 (ET-1) as a noninvasive biomarker of PCOS and to evaluate its possible relationship with IR as well as clinic-morphological features of PCOS

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call