Abstract

Prostaglandin E synthase (PGES) functions as the terminal enzyme in the biosynthesis of prostaglandin E(2) (PGE(2)) and is a potent regulator of bone and cartilage metabolism. Among the 3 isozymes of PGES, microsomal PGES-1 (mPGES-1) is known to play the most critical role in the production of PGE(2) in pathophysiologic events. This study investigated the roles of mPGES-1 under normal physiologic and pathophysiologic conditions in the skeletons of mPGES-1-deficient (mPGES-1(-/-)) mice. Skeletons of mPGES-1(-/-) mice and their wild-type littermates were compared by radiologic and histologic analyses. Four models of skeletal disorders were created: bone loss induced by ovariectomy, bone loss induced by hind limb unloading, osteoarthritis (OA) induced by instability in the knee joint, and bone fracture by osteotomy at the tibial midshaft. Expression of the PGES enzymes was examined by immunohistochemistry and real-time reverse transcription-polymerase chain reaction. The cellular mechanism of fracture healing was examined in ex vivo cultures of costal cartilage chondrocytes. Microsomal PGES-1(-/-) mice had unaffected skeletal phenotypes under normal physiologic conditions. In the bone fracture model, fracture healing was impaired by the mPGES-1 deficiency, with half of the mice remaining in a non-bone union state even after 21 days; normal fracture healing was restored by adenoviral reintroduction of mPGES-1. The other skeletal disorders were not affected by the mPGES-1 deficiency. In vivo and ex vivo analyses revealed an impaired proliferation of chondrocytes in cartilage with the mPGES-1 deficiency, at an early stage of fracture healing. In these mouse models of skeletal disorders, mPGES-1 was indispensable for bone repair through chondrocyte proliferation, but was not essential for the skeleton under normal physiologic conditions, nor did it play a role in the pathophysiologic conditions of bone loss due to ovariectomy, bone loss due to unloading, or stress-induced OA.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.