Abstract
Complement activation plays a critical role in the pathogenesis of Guillain-Barré syndrome (GBS), a debilitating immune-mediated neuropathy. Mannose-binding lectin (MBL) is a complement activation factor of lectin pathway which as genetic host factor may influence the susceptibility or severity of GBS. We investigated the frequency of MBL2 promoter (− 550H/L and − 221X/Y) and functional region (exon 1 A/O) polymorphisms and their association with disease susceptibility, clinical features and serum MBL among GBS patients (n = 300) and healthy controls (n = 300) in Bangladesh. The median patient age was 30 years (IQR: 18–42; males, 68%). MBL2 polymorphisms were not significantly associated with GBS susceptibility compared to healthy controls. HL heterozygosity in GBS patients was significantly associated with mild functional disability at enrolment (P = 0.0145, OR, 95% CI 2.1, 1.17–3.82). The HY, YA, HA and HYA heterozygous haplotypes were more common among mildly affected (P = 0.0067, P = 0.0086, P = 0.0075, P = 0.0032, respectively) than severely affected patients with GBS. Reduced serum MBL was significantly associated with the LL, OO and no HYA variants and GBS disease severity. No significant association was observed between MBL2 polymorphisms and electrophysiological variants, recent Campylobacter jejuni infection or anti-ganglioside (GM1) antibody responses in GBS. In conclusion, MBL2 gene polymorphisms are related to reduced serum MBL and associated with the severity of GBS.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.