Abstract
BackgroundLong non-coding RNA (lncRNA) has been implicated in the pathogenesis of pulmonary tuberculosis (PTB). This study aims to investigate the involvement of lncRNA THRIL and HOTAIR gene single nucleotide polymorphisms (SNPs) and their expression levels in PTB susceptibility.MethodsA total of 456 PTB patients and 464 healthy controls participated in our study. we genotyped six SNPs of THRIL and HOTAIR genes using an improved multiple ligase detection reaction (iMLDR). Additionally, real-time reverse-transcriptase polymerase chain reaction was employed to detect the expression levels of THRIL and HOTAIR in peripheral blood mononuclear cells (PBMC) from 78 PTB patients and 84 healthy controls.ResultsNo significant differences in allele and genotype frequencies were observed for THRIL rs1055472, rs11058000, and HOTAIR rs12427129, rs1899663, rs4759314, and rs7958904 polymorphisms between PTB patients and healthy controls (all P > 0.05). Moreover, genotype frequencies of all SNPs did not show any association with PTB susceptibility in the dominant–recessive model. However, the frequencies of rs7958904 CC genotype and C allele in the HOTAIR gene were significantly correlated with leukopenia in PTB patients. Furthermore, the expression levels of the HOTAIR gene were significantly elevated in PTB patients compared to controls.ConclusionsOur study indicates that THRIL and HOTAIR gene SNPs might not contribute to PTB susceptibility, while the level of HOTAIR was increased in PTB patients.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.