Abstract

BackgroundPrevious studies have indicated that the ratio of lactate/albumin (L/A) has predictive value for the prognosis of critically ill patients with heart failure. Some studies have also indicated that a low serum bicarbonate concentration is inversely related to the mortality risk of patients with cardiogenic shock. However, the value of bicarbonate and the L/A ratio for predicting the mortality risk of patients with acute myocardial infarction (AMI) is still unclear. We therefore conducted a retrospective study to research this problem.MethodsThe subjects of this study were patients with AMI, and the data source was the Medical Information Mart for Intensive Care III database. The primary endpoint was 30-day all-cause mortality after admission. The Receiver operating characteristic (ROC) curve was used to compare the predictive value of L/A ratio, lactate and albumin for end-point events. The effects of different L/A ratio levels and different bicarbonate concentrations on 7-day and 30-day all-cause mortality were compared using Kaplan–Meier (K-M) curves. Hazard ratios for different L/A ratio and different bicarbonate concentrations were investigated using COX proportional hazards models.ResultsThe Area Under Curve (AUC) of L/A ratio, lactate, and albumin were 0.736, 0.718, and 0.620, respectively. (1) L/A ratio: The patients were divided into three groups according to their L/A ratio: tertile T1 (L/A ratio ≤ 0.47), tertile T2 (L/A ratio ≤ 0.97), and tertile T3 (L/A ratio > 0.97). The T2 and T3 groups had higher 30-day all-cause mortality risks than the T1 group. The restricted cubic spline (RCS) model indicated that there was a nonlinear relationship between L/A ratio and 30-day mortality (P < 0.05). (2) Bicarbonate concentration: The patients were also divided into three groups based on their bicarbonate concentration: G1 (22–27 mmol/L), G2 (< 22 mmol/L), and G3 (> 27 mmol/L). The G2 and G3 groups had higher 30-day all-cause mortality risks than the G1 group. The RCS model indicated that there was a nonlinear relationship between bicarbonate concentration and 30-day mortality (P < 0.05). The RCS model indicated that there was a nonlinear relationship between hemoglobin level and 30-day all-cause mortality (P < 0.05).ConclusionL/A ratio and bicarbonate concentration and hemoglobin level have predictive value for predicting 30-day mortality in patients with acute myocardial infarction.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call