Abstract
BackgroundBacteria that have acquired antimicrobial resistance, in particular ESBL-producing Enterobacteriaceae, are an important healthcare concern. Therefore, transmission routes and risk factors are of interest, especially for the carriage of ESBL-producing E. coli. Since there is an enhanced risk for pig slaughterhouse employees to carry ESBL-producing Enterobacteriaceae, associated with animal contact as potential risk factor, the present study investigated the occurrence of ESBL-producing Enterobacteriaceae in poultry slaughterhouse employees. Due to the higher level of resistant Enterobacteriaceae in primary poultry production than in pig production, a higher risk of intestinal colonization of poultry slaughterhouse employees was expected.ResultsESBL-producing Enterobacteriaceae were detected in 5.1% (5 of 99) of the fecal samples of slaughterhouse workers. The species of these isolates was confirmed as E. coli. PCR assays revealed the presence of the genes blaCTX-M-15 (n = 2) and blaSHV-12 (n = 3) in these isolates, partly in combination with the β-lactamase gene blaTEM-135. Participants were divided into two groups according to their occupational exposure and results indicated an increased probability of colonization with ESBL-producing Enterobacteriaceae for the group of ‘higher exposure’ (OR 3.7, exact 95% CI 0.6–23.5; p = 0.4). For intestinal colonization with ESBL-producing Enterobacteriaceae, a prevalence of 10% (3/30) was observed in the group of ‘higher exposure’ versus 2.9% (2/69) in the group of ‘lower exposure’. Employees in working steps such as ‘hanging’ poultry in the process of slaughter and ‘evisceration’ seemed to have a higher risk for intestinal colonization with ESBL-producing Enterobacteriaceae compared to the group of ‘lower exposure’.ConclusionThis study is the first of its kind to collect data on the occupational exposure of slaughterhouse workers to ESBL-producing Enterobacteriaceae in Europe. The results suggested that colonization with ESBL-producing Enterobacteriaceae is associated with occupational exposure in poultry slaughterhouses. However, the presence of ESBL-producing E. coli isolates in only 5.1% (5/99) of the tested employees in poultry slaughterhouses suggests a lower transmission risk than in pig slaughterhouses.
Highlights
Antimicrobial resistant bacteria in animals are a challenge for public health, as they can be transferred from animals to humans via direct contact or indirectly through the food chain [1, 2]
ESBL-producing Enterobacteriaceae were detected in 5.1% (5 of 99) of the fecal samples of slaughterhouse workers
PCR assays revealed the presence of the genes blaCTX-M-15 (n = 2) and blaSHV-12 (n = 3) in these isolates, partly in combination with the β-lactamase gene blaTEM-135
Summary
Antimicrobial resistant bacteria in animals are a challenge for public health, as they can be transferred from animals to humans via direct contact or indirectly through the food chain [1, 2]. Infections with extended-spectrum βlactamase (ESBL-)producing Enterobacteriaceae in particular are associated with an increased burden of disease [3]. While blaCTX-M-15 is the most common ESBL gene found in clinical E. coli isolates from humans, the blaCTX-M-1 gene is the most frequent gene among E. coli from livestock [6, 7]. The level of ESBL-producing E. coli seems to be higher in poultry flocks than in other livestock such as pigs and cattle [6, 7, 9, 10]. Bacteria that have acquired antimicrobial resistance, in particular ESBL-producing Enterobacteriaceae, are an important healthcare concern. Since there is an enhanced risk for pig slaughterhouse employees to carry ESBL-producing Enterobacteriaceae, associated with animal contact as potential risk factor, the present study investigated the occurrence of ESBL-producing Enterobacteriaceae in poultry slaughterhouse employees. Due to the higher level of resistant Enterobacteriaceae in primary poultry production than in pig production, a higher risk of intestinal colonization of poultry slaughterhouse employees was expected
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.