Abstract

Inflammatory bowel disease (IBD) is an idiopathic prolonged ailment accountable for inflammatory conditions of the intestine. Moreover, arthritis is responsible for joints' stiffness and painful inflammation. IBD shows certain articular extra-intestinal manifestations associating IBD with arthritis. IBD associated arthritis is found to be linked with ankylosing spondylitis (AS). The present study insights for the potential and putative drug targets and biomarkers of IBD associated with arthritis using in silico approaches. Microarray data analysis of datasets involving IBD affected and AS affected vs controls were done to explore the differentially expressed genes (DEGs). In majority of the datasets, the common DEGs found were sterile alpha motif domain containing 9 like (SAMD9L), inhibin beta A subunit (INHBA), transmembrane protein 45A (TMEM45A) and transmembrane and tetratricopeptide repeat containing 1 (TMTC1). The common functions and pathways found between the DEGs were control of macromolecule metabolism process, control of metabolic process, control of primary metabolic process, and control of protein metabolic process, cell differentiation, organ development, single-organism development process, multicellular organism development process, development of system, single-multicellular organism development process, developmental process, development of anatomical structure, multicellular organismal development process, control of biological process, cell proliferation, hematopoietic progenitor cell differentiation and immune system process. TMTC1 and INBHA were found to be more biologically significant genes according to the topological properties of the network. This study also suggests that TMTC1, INBHA, TMEM45A and SAMD9L DEGs and their accompanying pathways might have the potential to be exploited as drug targets and biomarkers in the diagnosis and/or treatment of IBD linked arthritis and warrants for further experimental validation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.