Abstract

Numerous studies focused on the association between lung function impairment and inflammation caused by fine particulate matter (PM2.5), but the causal relationships are difficult to clarify. In the current study, twenty healthy Chinese young adults who participated in 7days of observation every four seasons were enrolled, and autoregression models (AM) and classification and regression trees (CART) in a machine learning framework were applied to analyze the association among PM2.5 exposure, inflammation, and lung function from a data structure perspective. There were strong cross-correlations between personal dose of PM2.5 (Dw) and lung functions (vital capacity (VC), forced vital capacity (FVC), etc.). These cross-correlation coefficients were associated with inflammatory indicators (uteroglobin (UG), serum amyloid (SAA), and fractional exhaled nitric oxide (FeNO)). CART reported that inflammatory indicators UG and SAA had the predictive ability of the directional association between Dw and FVC at 1-day lag and that high levels of UG and SAA predicted that PM2.5 exposure induced lung function decline. Consistently, lower lung function indicators at a 2-day lag after personal PM2.5 exposure predicted the high value of inflammatory indicator FeNO. Taken together, we applied machine learning algorithms to analyze repeated measurement data, finding that inflammation and lung function decline caused by PM2.5 could affect each other.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.