Abstract

Strong evidence links high total serum homocysteine (tHcy) and low methionine (Met) levels with higher risk of ischemic disease, but other cardiovascular (CV) diseases may also be associated with their pleiotropic effects. To investigate the association of serum concentrations of tHcy and Met with the rate of CV multimorbidity development in older adults and to explore the role of methylenetetrahydrofolate reductase (MTHFR) 677C>T polymorphism in this association. The Swedish National Study on Aging and Care in Kungsholmen is a cohort study of randomly selected individuals aged 60 years or older. The present study included data on 1969 individuals with complete information and without CV diseases at baseline, collected from the baseline examination (2001-2004) to the fourth follow-up (2013-2016). Data analysis was conducted from January to May 2019. Concentrations of tHcy and Met were measured from nonfasting venous blood samples. The Met:tHcy ratio was considered a possible indicator of methylation activity. MTHFR status was dichotomized as any T carriers vs noncarriers. The number of CV diseases at each wave was ascertained based on medical interviews and records, laboratory test results, and drug data. Linear mixed models were used to study the association of baseline tHcy and Met levels and the rate of CV multimorbidity development, adjusting for sociodemographic characteristics, CV risk factors, chronic disease burden, and drug use. Of 1969 participants, most were women (1261 [64.0%]), with a mean (SD) age of 70.9 (9.8) years; 1703 participants (86.6%) had at least a high school level of education. Baseline measurements of serum tHcy, Met, and the Met:tHcy ratio were associated with the rate of CV disease accumulation (tHcy: β = 0.023 per year; 95% CI, 0.015 to 0.030; P < .001; Met: β = -0.007 per year; 95% CI, -0.013 to -0.001; P = .02; Met:tHcy ratio: β = -0.017 per year; 95% CI, -0.023 to -0.011; P < .001). The association between low Met concentrations and the rate of CV multimorbidity development was restricted to the group with CT/TT alleles of MTHFR (β = 0.023 per year; 95% CI, 0.006 to 0.041; P = .009). Results remained largely significant when individual CV diseases were removed from the total count 1 at a time (eg, ischemic heart disease, tHcy: β = 0.023 per year; 95% CI, 0.013 to 0.027; P < .001; Met: β = -0.006 per year; 95% CI, -0.011 to -0.0003; P = .04; Met:tHcy ratio: β = -0.015 per year; 95% CI, -0.020 to -0.009; P < .001). In this study, high tHcy and low Met levels were associated with faster CV multimorbidity development in older age. The interactive association of Met concentrations and MTHFR polymorphism, together with the association found for the Met:tHcy ratio, point toward the relevance of impaired methylation in the pathogenesis of CV aging.

Highlights

  • Most age-related cardiovascular (CV) diseases share common underlying biological mechanisms

  • Baseline measurements of serum total homocysteine (tHcy), Met, and the Met:tHcy ratio were associated with the rate of CV disease accumulation

  • The association between low Met concentrations and the rate of CV multimorbidity development was restricted to the group with methylenetetrahydrofolate reductase (MTHFR) 677CT polymorphism (CT)/MTHFR 677TT polymorphism (TT) alleles of MTHFR (β = 0.023 per year; 95% CI, 0.006 to 0.041; P = .009)

Read more

Summary

Introduction

Most age-related cardiovascular (CV) diseases share common underlying biological mechanisms. Telomere attrition,[1] epigenetic modifications,[2] defects in autophagy or mitophagy,[3] and cell senescence[4] eventually contribute to a pro-inflammatory environment that is common in different disorders, such as atherosclerosis, cardiomyopathies, heart failure, ischemic heart disease, and stroke. The rate at which multiple CV diseases, ie, CV multimorbidity, accumulate is a marker of CV aging.[5] the identification of cellular and molecular biomarkers of accelerated CV multimorbidity development may be helpful for secondary prevention and prognostic counselling. Poor diet, impaired renal function, and intake of certain drugs,[9] moderate increases in tHcy have been associated with a 677C>T variant in the gene coding for methylenetetrahydrofolate reductase (MTHFR; OMIM 607093).[10]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call