Abstract

Protein tyrosine phosphorylation and dephosphorylation have been implicated in the growth and functional responses of hematopoietic cells. Recent studies have identified a novel protein tyrosine phosphatase, termed hematopoietic cell phosphatase (HCP) or PTP1C, that is predominantly expressed in hematopoietic cells. HCP encodes a cytoplasmic phosphatase that contains two src homology 2 (SH2) domains. Since SH2 domains have been shown to target the association of signal-transducing molecules with activated growth factor receptors containing intrinsic protein kinase activity, we assessed the association of HCP with two hematopoietic growth factor receptors, c-Kit and c-Fms. The results demonstrate that HCP transiently associates with ligand-activated c-Kit but not c-Fms and that this association occurs through the SH2 domains. In both colony-stimulating factor 1- and stem cell factor-stimulated cells, there is a marginal increase in tyrosine phosphorylation of HCP. Lastly, HCP can dephosphorylate autophosphorylated c-Kit and c-Fms in in vitro reactions. The potential role of HCP in stem cell factor signal transduction is discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.