Abstract
Members of the somatotrophic axis, especially GH and IGF1, are essential for growth. The association between GH polymorphisms and growth traits was numerously studied in cattle; however, no data are available for such association studies in buffalo. Therefore, this study was conducted to screen for polymorphisms in the GH gene and to study their putative association with growth traits in 200 Egyptian buffaloes. Polymerase chain reaction single-strand conformation polymorphism and sequencing were applied to look for polymorphisms in 3 loci spanning all exons and introns of buffalo GH. The C (MspI+) >T (MspI-) SNP in intron3, which is well known in cattle, was not detected in the examined buffaloes. However, 2 missense mutations were detected in exon5: one previously detected p.Leu153Val SNP, with very low frequencies for the mutant (Val) allele and one novel p.Asn174His SNP. At weaning age, the p.Leu153Val SNP was significantly associated with weaning body weight and gain with the positive effect of the wild allele (Leu) and higher GH serum, mRNA, and protein levels in animals with Leu/Asn and Leu/His haplotypes. At yearling age, the 2 SNPs associated with yearling weight and gain with positive effect for the mutant (Val and His) alleles with increased GH, and IGF1 serum, mRNA, and protein and GHR mRNA and protein levels in animals with Val/Asn haplotype. Therefore, the selection of Egyptian buffaloes with the Val/Asn haplotype could improve the growth traits of Egyptian buffaloes at yearling age which is the target age for perfect growing.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.