Abstract

Gangliosides are known to act as potent suppressors of lectin-stimulated lymphocyte activation when added to the culture medium. Since this effect may be mediated via ganglioside association with (or insertion into) the plasma membrane, we have used 3H- and spin-labelled derivatives of mixed gangliosides to probe the nature of this interaction. Gangliosides bind rapidly to the lymphocyte membrane and show no preference for association with either inside-out or right-side-out membrane vesicles. Around 20% of the bound gangliosides can be removed by repetitive washing, and a further 22–28% by treatment with pronase for 1 h, suggesting that this fraction is tightly bound to membrane proteins at the cell surface. The ESR spectrum of membrane-bound gangliosides did not resemble the spin-exchanged spectrum of micellar spin-labelled gangliosides in aqueous solution, but was similar to that seen for 5 mol% ganglioside spin label in liposomes of egg phosphatidylcholine. This suggests that the bulk of the membrane-bound gangliosides are inserted and molecular dispersed in the lymphocyte membrane. Binding of wheat-germ agglutinin to lymphocyte-associated gangliosides results in specific immobilization of the carbohydrate headgroup, while concanavalin A and other lectins have little or no effect on oligosaccharide mobility. Membrane-inserted gangliosides show a response to lectin binding which is qualitatively different from that seen for gangliosides in bilayers of phosphatidylcholine.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.