Abstract

Galectin-9 (Gal-9) is an immune checkpoint protein that facilitates T cell exhaustion and modulates the tumor-associated microenvironment, and could be a potential target for immune checkpoint inhibition. This study was conducted to assess Gal-9 expression in triple-negative breast cancer (TNBC) and evaluate its association with programmed cell death ligand 1 (PD-L1) expression and immune cell infiltration in tumors and the clinical outcome of patients. Overall, 109 patients with TNBC were included. Gal-9 expression was assessed its relationships with tumor clinicopathologic characteristics, tumor-infiltrating lymphocyte (TIL) levels, PD-L1+ immune cells, and tumor cells by tissue microarray and immunohistochemistry. Low Gal-9 expression was statistically correlated with higher tumor stage (p = 0.031) and presence of lymphovascular invasion (p = 0.008). High Gal-9 expression was associated with a high level of stromal TILs (sTIL; p = 0.011) and positive PD-L1 expression on tumor cells (p = 0.004). In survival analyses, low Gal-9 expression was associated with significantly poor OS (p = 0.013) in patients with TNBC with PD-L1 negativity in tumor cells. Our findings suggest that increased Gal-9 expression is associated with changes in the antitumor microenvironment, such as increased immune cell infiltration and antimetastatic changes. This study emphasizes the predictive value and promising clinical applications of Gal-9 in TNBC.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.