Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental and neurobehavioral disorder characterized by impaired social communication, repetitive and restricted patterns of behavior, activity, or interest, and altered emotional processing. Reported prevalence is 4 times higher in men and it has increased in recent years. Immunological, environmental, epigenetic, and genetic factors play a role in the pathophysiology of autism. Many neurochemical pathways and neuroanatomical events are effective in determining the disease. It is still unclear how the main symptoms of autism occur because of this complex and heterogeneous situation. In this study, we focused on gamma amino butyric acid (GABA) and serotonin, which are thought to contribute to the etiology of autism; it is aimed to elucidate the mechanism of the disease by investigating variant changes in the GABA receptor subunit genes GABRB3, GABRG3 and the HTR2A gene, which encodes one of the serotonin receptors.200 patients with ASD between the ages of 3–9 and 100 healthy volunteers were included in the study. Genomic DNA isolation was performed from peripheral blood samples taken from volunteers. Genotyping was performed using the RFLP method with PCR specific for specific variants. Data were analyzed with SPSS v25.0 program.According to the data obtained in our study; In terms of HTR2A (rs6313 T102C) genotypes, the homozygous C genotype carrying frequency in the patient group and the homozygous T genotype carrying frequency in the GABRG3 (rs140679 C/T) genotypes were found to be significantly higher in the patient group compared to the control group (*p: 0.0001, p: 0.0001). It was determined that the frequency of individuals with homozygous genotype was significantly higher in the patient group compared to the control group and having homozygous genotypes increased the disease risk approximately 1.8 times. In terms of GABRB3 (rs2081648 T/C) genotypes, it was determined that there was no statistically significant difference in the frequency of carrying homozygous C genotype in the patient group compared to the control group (p: 0.36).According to the results of our study, we think that the HTR2A (rs6313 T102C) polymorphism is effective in modulating the empathic and autistic characteristics of individuals, and that the HTR2A (rs6313 T102C) polymorphism is more distributed in the post-synaptic membranes in individuals with a higher number of C alleles. We believe that this situation can be attributed to the spontaneous stimulatory distribution of the HTR2A gene in the postsynaptic membranes because of T102C transformation.In genetically based autism cases, carrying the point mutation in the rs6313 variant of the HTR2A gene and the C allele and the point mutation in the rs140679 variant of the GABRG3 gene and accordingly carrying the T allele provide a predisposition to the disease.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.