Abstract

This study aimed to investigate the association of FTO methylation level with type 2 diabetes mellitus (T2DM) in a nested case-control study. This nested case-control study included 287 pairs of T2DM cases and controls identified from a rural Chinese cohort study with a 6-year follow-up. Controls were matched to the cases on a 1:1 basis by age, sex, ethnicity, marital status, and residence. Conditional multivariate logistic regression models were used to calculate odds ratios (ORs) and 95% confidence intervals (CIs) for the association of cytosine guanine (CpG) locus and tag-single nucleotide polymorphisms (Tag-SNPs) with T2DM. Spearman correlation analysis was used to evaluate the association between FTO methylation and possible risk factors for T2DM in the control group. The methylation level on the CpG9 site significantly differs between cases and controls, with a significant association between the CpG9 site methylation and probability of T2DM: OR 2.19 (95%CI: 1.31-3.65) after adjusting for potential confounders. The Tag-SNPs (rs72803657, rs1558902, rs17817449, rs11076023) were not associated with T2DM. Further, FTO methylation was associated with some risk factors for T2DM. A CpG locus of FTO was positively associated with T2DM, but SNPs were not. FTO methylation were also associated with some T2DM risk factors. Further study with a large sample size and data on metabolic product are needed to confirm the association.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.