Abstract

Purpose:To investigate the association of FOXE3-p.Ala170Ala (rs34082359) and PITX3-p.Ile95Ile (rs2281983) polymorphisms with congenital cataract and microphthalmia in a western Indian population.Methods:FOXE3-p.Ala170Ala (c.510C>T) and PITX3-p.Ile95Ile (c.285C>T) polymorphisms were genotyped in 561 subjects consisting of 242 cases with congenital cataract, 52 with microphthalmia, and 267 controls using polymerase chain reaction-restriction fragment length polymorphism. Approximately 10% of samples were randomly sequenced for each single nucleotide polymorphism to confirm the genotypes. The prediction of mRNA secondary structure for polymorphism FOXE3-p.Ala170Ala and PITX3-p.Ile95Ile was performed.Results:A significantly high frequency of T allele and a borderline significance in the frequency of TT genotype of FOXE3-p.Ala170Ala was observed in microphthalmia cases, as compared to controls [T allele: OR: [CI] = 1.8 [1.15-2.72], P = 0.0115; TT: OR [CI] = 2.9 [1.14-7.16], P = 0.0291). The frequency of CC genotype was significantly low in microphthalmia cases when compared to controls (CC: OR [CI] = 0.5 [0.24-0.86, P = 0.0150). There was no significant difference in the allele and genotype frequencies of PITX3-p.Ile95Ile between cases and controls. A slight free energy change was observed in the secondary structure of mRNA between the FOXE3-p.Ala170Ala C-allele (-917.60 kcal/mol) and T-allele (-916.80 kcal/mol) and between PITX3-p.Ile95Ile C-allele (-659.80 kcal/mol) and T-allele (-658.40 kcal/mol).Conclusion:The present findings indicate that FOXE3-p.Ala170Ala ‘T’ allele and ‘TT’ genotype could be predisposing factors for microphthalmia while ‘CC’ genotype might play a protective role against it. A reduction in the free energy change associated with FOXE3-p.Ala170Ala ‘T’ allele could further contribute towards disease risk.

Highlights

  • IntroductionCongenital cataract and microphthalmia are vision‐threatening eye disorders that account for 10‐11%

  • Peripheral blood was obtained from 561 subjects consisting of 242 cases with congenital cataract, 52 with microphthalmia, and 267 age‐and ethnicity‐matched normal healthy controls

  • The study consisted of 242 congenital cataract cases, 52 microphthalmia cases, and 267 age and ethnicity matched controls

Read more

Summary

Introduction

Congenital cataract and microphthalmia are vision‐threatening eye disorders that account for 10‐11%. Genetics of Cataracts and Microphthalmia; Vidya et al of childhood blindness.[1,2] Congenital cataract represents lens opacity present at birth[3] and microphthalmia is characterized by the presence of small eye within the orbit.[1] Both disorders occur either in isolation or as part of a syndrome and are highly heterogeneous.[1,4] Several chromosomal, monogenic, and environmental factors have been identified as causes for the occurrence of congenital cataract and microphthalmia.[1,5,6] genetic causes have been suggested to play a major role in these conditions.[1,7]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.