Abstract

Individual differences exist in gait motor imagery ability. However, little is known about the underlying neural mechanisms. We previously conducted a study using functional near-infrared spectroscopy (fNIRS), which showed that participants who overestimated mental walking times to a greater degree exhibited greater activation in the right prefrontal cortex (PFC). The PFC is implicated in executive functions (EFs), including working memory (WM). Thus, this study investigated whether individual differences in EF capacity are associated with gait motor imagery ability and PFC activity. Thirty volunteers participated (mean age: 21.7 ± 1.8 years) in the study. Their EF capacity was assessed by the Trail Making Test - Part B (TMT-B). We measured the accuracy of gait motor imagery and PFC activity during mental walking using fNIRS, while changing task difficulty by varying the path width. The results showed that the overestimation of mental walking time over actual walking time and right PFC activity increased with an increase in the TMT-B times. These results suggest that the EF capacity, including WM, is strongly associated with gait motor imagery ability and right PFC activity. The brain network that includes the right PFC may play an important role in the maintenance and manipulation of gait motor imagery.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call