Abstract
BackgroundEmerging molecular, animal model and epidemiologic evidence suggests that Shiga-toxigenic Escherichia coli O157:H7 (STEC O157) isolates vary in their capacity to cause human infection and disease. The translocated intimin receptor (tir) and intimin (eae) are virulence factors and bacterial receptor-ligand proteins responsible for tight STEC O157 adherence to intestinal epithelial cells. They represent logical genomic targets to investigate the role of sequence variation in STEC O157 pathogenesis and molecular epidemiology. The purposes of this study were (1) to identify tir and eae polymorphisms in diverse STEC O157 isolates derived from clinically ill humans and healthy cattle (the dominant zoonotic reservoir) and (2) to test any observed tir and eae polymorphisms for association with human (vs bovine) isolate source.ResultsFive polymorphisms were identified in a 1,627-bp segment of tir. Alleles of two tir polymorphisms, tir 255 T>A and repeat region 1-repeat unit 3 (RR1-RU3, presence or absence) had dissimilar distributions among human and bovine isolates. More than 99% of 108 human isolates possessed the tir 255 T>A T allele and lacked RR1-RU3. In contrast, the tir 255 T>A T allele and RR1-RU3 absence were found in 55% and 57%, respectively, of 77 bovine isolates. Both polymorphisms associated strongly with isolate source (p < 0.0001), but not by pulsed field gel electrophoresis type or by stx1 and stx2 status (as determined by PCR). Two eae polymorphisms were identified in a 2,755-bp segment of 44 human and bovine isolates; 42 isolates had identical eae sequences. The eae polymorphisms did not associate with isolate source.ConclusionPolymorphisms in tir but not eae predict the propensity of STEC O157 isolates to cause human clinical disease. The over-representation of the tir 255 T>A T allele in human-derived isolates vs the tir 255 T>A A allele suggests that these isolates have a higher propensity to cause disease. The high frequency of bovine isolates with the A allele suggests a possible bovine ecological niche for this STEC O157 subset.
Highlights
Emerging molecular, animal model and epidemiologic evidence suggests that Shigatoxigenic Escherichia coli O157:H7 (STEC O157) isolates vary in their capacity to cause human infection and disease
Polymorphisms in STEC O157 tir and eae Five polymorphic loci were identified in a 1,627-kb segment of the STEC O157 tir gene [GenBank:DQ458771]
This study demonstrates that genomic polymorphisms in tir but not eae predict the likelihood that STEC O157 strains can cause human disease
Summary
Animal model and epidemiologic evidence suggests that Shigatoxigenic Escherichia coli O157:H7 (STEC O157) isolates vary in their capacity to cause human infection and disease. The translocated intimin receptor (tir) and intimin (eae) are virulence factors and bacterial receptor-ligand proteins responsible for tight STEC O157 adherence to intestinal epithelial cells. They represent logical genomic targets to investigate the role of sequence variation in STEC O157 pathogenesis and molecular epidemiology. The purposes of this study were (1) to identify tir and eae polymorphisms in diverse STEC O157 isolates derived from clinically ill humans and healthy cattle (the dominant zoonotic reservoir) and (2) to test any observed tir and eae polymorphisms for association with human (vs bovine) isolate source. HUS, due to STEC O157 infection, is the leading cause of renal failure for children under the age of five years [1]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.