Abstract

BackgroundStudies have reported the association of epicardial adipose tissue (EAT) with cardiac structure and function as well as exercise capacity in patients with heart failure with preserved ejection fraction (HFpEF), yielding inconsistent results. We aimed to conduct a meta-analysis of studies on the association of EAT with cardiac structure and function and exercise capacity in HFpEF patients. Methods and ResultsWe searched studies examining the association of EAT quantified by echocardiography, computed tomography, or magnetic resonance imaging (MRI) with cardiac structure and function or exercise capacity in HFpEF patients through PubMed, Web of Science, and Scopus. In cases of significant heterogeneity (I2 > 50 %), data were pooled using a random-effects model; otherwise, a fixed-effects model was used. We identified five echocardiography studies (n = 825) and six MRI studies (n = 562), but found no computed tomography studies. In the echocardiography studies, EAT thickness correlated positively with left ventricular (LV) mass (Prandom < 0.01) and negatively with LV global longitudinal strain (Prandom < 0.01) and peak exercise oxygen uptake (Pfix < 0.001). In the MRI studies, EAT volume correlated positively with LV mass (Pfix < 0.01), left atrial volume (Pfix < 0.001), and the ratio of LV early diastolic mitral inflow to early diastolic mitral annular velocity (E/e’; Prandom < 0.01) and negatively with LV ejection fraction (Pfix < 0.01) and LV global longitudinal strain (Pfix < 0.001). ConclusionOur meta-analysis indicates a potential association of increased EAT with altered cardiac structure and function and exercise intolerance in HFpEF patients. However, our meta-analysis included only two or three studies for each outcome and thus further studies are necessary to confirm our findings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.