Abstract

AimThis study explored relationships between enteral feeding and tracheal pepsin A. BackgroundMechanically ventilated (MV) patients receiving enteral feeding are at risk for microaspiration. Tracheal pepsin A, an enzyme specific to gastric cells, was a proxy for microaspiration of gastric secretions. MethodsSecondary analysis of RCT data from critically ill, MV adults was conducted. Microaspiration prevention included elevated head of bed, endotracheal tube cuff pressure management, and regular oral care. Tracheal secretions for pepsin A were collected every 12 h. Microaspiration was defined as pepsin A ≥ 6.25 ng/mL. Positive pepsin A in >30 % of individual tracheal samples was defined as abundant microaspiration (frequent aspirator). Chi-squared, Fisher's Exact test, and generalized linear model (GLM) were used. ResultsTracheal pepsin A was present in 111/283 (39 %) mechanically ventilated patients and 48 (17 %) had abundant microaspiration. Enteral feeding was associated with tracheal pepsin A, which occurred within 24 h of enteral feeding. Of the patients who aspirated, the majority received some enteral feeding 96/111 (86 %), compared to only 15/111 (14 %) who received no feeding. A greater number of positive pepsin A events occurred with post-pyloric feeding tube location (55.6 %) vs. gastric (48.6 %), although significant only at the event-level. Frequent aspirators (abundant pepsin A) had higher pepsin A levels compared to infrequent aspirators. ConclusionsOur findings confirmed the stomach as the microaspiration source. Contrary to other studies, distal feeding tube location did not mitigate microaspiration. Timing for first positive pepsin A should be studied for possible association with enteral feeding intolerance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call