Abstract

BackgroundRecent studies have explored various genetic and physiological factors related to high-altitude adaptation in highlander populations. However, the effects of single nucleotide polymorphisms (SNPs), influencing such adaptation, on physiological responses to hypobaric hypoxia have not been examined in lowlanders with lowlander ancestry. Thus, we aimed to investigate the association between SNPs around the EGLN1 genomic region, possibly involved in high-altitude adaptation, and physiological changes to hypobaric hypoxia exposure in a cohort of Japanese lowlanders.MethodsPhysiological data were obtained from 46 healthy Japanese male students under different atmospheric pressure conditions (equivalent to sea level and altitudes of 2500 and 4000 m). Genotypes of seven SNPs around EGLN1 were determined in all subjects by PCR-direct sequencing or TaqMan SNP genotyping assay.ResultsResults of the association study suggest that percutaneous arterial oxygen saturation (SpO2) responses of individuals with rs12097901 and rs2790859 alleles, whose frequencies are high in highlander populations (HL alleles), may be susceptible to acute hypobaric hypoxia. SpO2 levels of individuals with HL alleles were lower than those of individuals with non-HL alleles. At the same time, the subjects with HL alleles did not appear to have any remarkable hematological or pulmonary features that may counteract the low levels of SpO2. One may hypothesize that the low SpO2 levels in HL allele carriers could be a risk factor for acute mountain sickness in Japanese population.ConclusionsOur findings suggest that rs12097901 and rs2790859 genotypes affect SpO2 responses and may be associated with the susceptibility to acute hypobaric hypoxia in Japanese population.

Highlights

  • Recent studies have explored various genetic and physiological factors related to high-altitude adaptation in highlander populations

  • Tibetanspecific EPAS1 and EGLN1 alleles were associated with low hemoglobin concentration in the population, and these alleles can be protective against chronic hypoxia caused by excessive erythrocytosis [2, 9]

  • It is possible that the effect of HL alleles on Percutaneous arterial oxygen saturation (SpO2) levels under hypobaric hypoxia conditions may lead to the development of acute mountain sickness (AMS)

Read more

Summary

Introduction

Recent studies have explored various genetic and physiological factors related to high-altitude adaptation in highlander populations. We aimed to investigate the association between SNPs around the EGLN1 genomic region, possibly involved in high-altitude adaptation, and physiological changes to hypobaric hypoxia exposure in a cohort of Japanese lowlanders. Recent studies have identified single nucleotide polymorphisms (SNPs) related to physiological phenotypes that may be adaptive in high-altitude (hypobaric hypoxia) environments. Physiological and genetic factors that contribute to high-altitude adaptations have been extensively studied in Tibetan, Ethiopian, and Andean highlander populations. Genome-wide scans in Tibetan highlanders detected signals of recent positive selection in several chromosomal regions containing genes involved in the hypoxia-inducible factor (HIF) pathway, especially EPAS1 and EGLN1 [2,3,4,5,6]. Tibetanspecific EPAS1 and EGLN1 alleles were associated with low hemoglobin concentration in the population, and these alleles can be protective against chronic hypoxia caused by excessive erythrocytosis [2, 9]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call