Abstract

PURPOSE: To evaluate the time course and association with survival of anatomic lesion volumes and diffusion imaging parameters for patients with newly diagnosed glioblastoma who were treated with radiation and concurrently with either temozolomide and enzastaurin (TMZ+enza cohort) or temozolomide, erlotonib, and bevaciumab (TMZ+erl+bev cohort). MATERIALS AND METHODS: Regions of interest corresponding to the contrast-enhancing and hyperintense lesions on T2-weighted images were generated. Diffusion-weighted images were processed to provide maps of apparent diffusion coefficient, fractional anisotropy, and longitudinal and radial eigenvalues. Histograms of diffusion values were generated and summary statistics calculated. Cox proportional hazards models were employed to assess the association of representative imaging parameters with survival with adjustments for age, Karnofsky performance status, and extent of resection. RESULTS: Although progression-free survival was significantly longer for the TMZ+erl+bev cohort (12.8 vs 7.3 months), there was no significant difference in overall survival between the two populations (17.0 vs 17.8 months). The median contrast-enhancing lesion volumes decreased from 6.3 to 1.9 cm3 from baseline to the postradiotherapy scan for patients in the TMZ+enza cohort and from 2.8 to 0.9cm3 for the TMZ+erl+bev cohort. Changes in the T2 lesion volumes were only significant for the latter cohort (26.5 to 11.9 cm3). The median apparent diffusion coefficient and related diffusion parameters were significantly increased for the TMZ+enza cohort (1054 to 1225 μm2/s). More of the anatomic parameters were associated with survival for the TMZ+enza cohort, whereas more diffusion parameters were associated with survival for the TMZ+erl+bev cohort. CONCLUSION: The early changes in anatomic and diffusion imaging parameters and their association with survival reflected differences in the mechanisms of action of the treatments that were being given. This suggests that integrating diffusion metrics and anatomic lesion volumes into the Response Assessment in Neuro-Oncology criteria would assist in interpreting treatment-induced changes and predicting outcome in patients with newly diagnosed glioblastoma who are receiving such combination treatments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.