Abstract

Cystatin C, an alternative serum measure of kidney function, is a stronger predictor of cardiovascular events than creatinine or estimated glomerular filtration rate (eGFR). We hypothesized that serum cystatin C concentration would have a stronger more linear association with cardiovascular functional status than creatinine-based measures in outpatients with established coronary heart disease (CHD). We measured serum cystatin C, serum creatinine, and eGFR in 906 outpatients with established CHD. We examined the association of these 3 measures of kidney function with treadmill exercise capacity (metabolic equivalent tasks achieved) and heart rate recovery (HRR) between peak and 1 minute after exercise by using linear and logistic regression. Higher cystatin C concentrations were associated linearly with worse treadmill exercise capacity and HRR. The proportion of participants with poor exercise capacity (metabolic equivalent tasks achieved < 5) was 45% (99 of 222 participants) among those with cystatin C levels in the highest quartile (>1.30 mg/L) compared with 12% (29 of 241 participants) among those with cystatin C levels in the lowest quartile (<0.92 mg/L; adjusted odds ratio, 3.2; 95% confidence interval, 1.6 to 6.5; P = 0.001). The proportion of participants with poor HRR (<16 beats/min) was 42% (92 of 214 participants) among those with cystatin C levels in the highest quartile compared with 16% (37 of 238 participants) among those with cystatin C levels in the lowest quartile (adjusted odds ratio, 2.2; 95% confidence interval, 1.2 to 4.0; P = 0.01). The lowest quartile of eGFR (<61.8 mL/min [<1.03 mL/s]) was associated with decreased exercise capacity and prolonged HRR, but no difference was observed across the upper 3 quartiles of eGFR. In patients with established CHD, cystatin C concentrations are associated linearly with worse exercise capacity and HRR. Cystatin C detects an association of impaired kidney function with decreased HRR and exercise capacity that is not fully captured using creatinine-based measurements.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.