Abstract

ObjectiveThis study was performed to establish a novel model of citric acid-induced chronic cough in guinea pigs and to investigate the pathogenesis of cough hypersensitivity.MethodsHealthy conscious guinea pigs inhaled citric acid (0.4 M) for 3 minutes twice daily for 25 days. Cough reactivity was evaluated, substance P (SP) and calcitonin gene-related peptide (CGRP) in bronchoalveolar lavage fluid were detected, and transient receptor potential cation channel subfamily V member 1 (TRPV1) protein expression in the trachea and bronchus was determined. Tracheal and bronchial tissues were examined for TRPV1.ResultsInhalation of 0.4 M citric acid increased coughing in a time-dependent manner: coughing peaked at 15 days and reached the lowest level at 25 days. This was accompanied by similar changes in SP, CGRP, and TRPV1 protein expression. TRPV1 was mainly observed in the mucosal and submucosal layer of the trachea and bronchi. The areas of TRPV1 positivity in the trachea and bronchi of citric acid-treated animals were significantly larger than in the control group.ConclusionsRepeated inhalation of citric acid can be employed to establish a chronic cough model in guinea pigs. Cough hypersensitivity in this model is related to tracheal TRPV1 activation and neurogenic inflammation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call