Abstract

Papillomaviruses are small DNA viruses that infect epithelial tissues and cause warts. Human papillomavirus (HPV) infection is the primary risk factor for the development of cervical cancer. The E6 and E7 oncogenes are the only genes consistently expressed in HPV-positive cervical cancer cells. Cottontail rabbit papillomavirus (CRPV) induces papillomas and carcinomas on cottontail and domestic rabbits and provides an excellent animal model of HPV infection and vaccine development. CRPV encodes three transforming proteins; LE6, SE6, and E7. Each of these proteins is required for papilloma formation. Like HPV E7, the CRPV E7 protein binds to the tumor suppressor pRB. In contrast, unlike HPV E6, the CRPV E6 proteins do not bind the tumor suppressor p53. Although more than a dozen cellular proteins have been identified as HPV E6 interacting proteins, nothing is known about the cellular interacting proteins of CRPV E6s. Here we describe the association of CRPV E6s with hDlg/SAP97, the mammalian homolog of the Drosophila discs large tumor suppressor protein. HPV E6 has previously shown to bind and target hDlg/SAP97 for degradation. Our results demonstrate that both LE6 and SE6 interact with hDlg/SAP97, although their association does not lead to the degradation of hDlg/SAP97. The PDZ domains of hDlg were shown to be sufficient for interaction with CRPV E6 proteins while the C-terminus of CRPV E6 is essential for the interaction with hDlg. The association of hDlg with SE6 may be important but not sufficient for the transformation of NIH 3T3 cells by SE6. Importantly, a CRPV SE6 mutant defective for papilloma formation did not interact with hDlg. These results suggest that interaction with hDlg/SAP97 plays a role in the biological function of CRPV E6s.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call