Abstract

BackgroundAltered circulating levels and genetic variation of B-type natriuretic peptide (BNP), has been associated with lower bone mineral density (BMD) values and incidence of osteoporosis in peritoneal dialysis patients, renal transplant recipients, and postmenopausal women. The potential relationship of circulating BNP with osteoporosis in patients with type 2 diabetes mellitus (T2DM), however, has not yet been studied.MethodsCirculating BNP levels were measured in 314 patients with T2DM, and participants were divided into normal BMD group (n = 73), osteopenia group (n = 120), and osteoporosis group (n = 121). The association of circulating BNP with diabetic osteoporosis and other parameters was analyzed.ResultsCirculating BNP was significantly higher in diabetic osteoporosis subjects than normal and osteopenia groups (P < 0.01 or P < 0.05). Circulating BNP levels correlated significantly and positively with neutrophil to lymphocyte ratio, systolic blood pressure, urinary albumin-to-creatinine ratio, and prevalence of hypertension, peripheral arterial disease, diabetic retinopathy, peripheral neuropathy, and nephropathy, and negatively with triglyceride, fasting blood glucose, lymphocyte count, hemoglobin, estimated glomerular filtration rate, bilirubin, osteoporosis self-assessment tool for Asians, BMD at different skeletal sites and corresponding T scores (P < 0.01 or P < 0.05). After multivariate adjustment, circulating BNP remained independently significantly associated with the presence of osteoporosis (odds ratio, 2.710; 95% confidence interval, 1.690–4.344; P < 0.01). BMD at the femoral neck and total hip and corresponding T scores were progressively decreased, whereas the prevalence of osteoporosis was progressively increased with increasing BNP quartiles (P for trend< 0.01). Moreover, receiver-operating characteristic analysis revealed that the optimal cutoff point of circulating BNP to indicate diabetic osteoporosis was 16.35 pg/ml.ConclusionsCirculating BNP level may be associated with the development of osteoporosis, and may be a potential biomarker for diabetic osteoporosis.

Highlights

  • Altered circulating levels and genetic variation of B-type natriuretic peptide (BNP), has been associated with lower bone mineral density (BMD) values and incidence of osteoporosis in peritoneal dialysis patients, renal transplant recipients, and postmenopausal women

  • Blood samples were obtained from all individuals in early morning following an overnight fasting of at least 8 h to measured fasting blood glucose (FBG), glycated hemoglobin A1C (HbA1c), lipid profiles, including total cholesterol (TC), triglyceride (TG), high density lipoprotein cholesterol (HDL-C) and low-density lipoprotein cholesterol (LDL-C), bilirubin, including total bilirubin (TBIL), direct bilirubin (DBIL) and indirect bilirubin (IBIL), serum creatinine, cystatin C, calcium, alkaline phosphatase (ALP), hemoglobin (Hb), white blood cell (WBC), neutrophil and lymphocyte counts, neutrophil to lymphocyte ratio (NLR), fibrinogen, and circulating BNP

  • We found that circulating BNP significantly increased in type 2 diabetes mellitus (T2DM) patients with osteoporosis, Table 2 Linear correlation analysis of variables associated with circulating BNP in study subjects

Read more

Summary

Introduction

Altered circulating levels and genetic variation of B-type natriuretic peptide (BNP), has been associated with lower bone mineral density (BMD) values and incidence of osteoporosis in peritoneal dialysis patients, renal transplant recipients, and postmenopausal women. The potential relationship of circulating BNP with osteoporosis in patients with type 2 diabetes mellitus (T2DM), has not yet been studied. Epidemiological studies have found that BMD values are reduced, normal, or increased in patients with T2DM, compared with non-diabetic patients, the risk of fracture is increased [1, 4, 5], indicating that increased risk of fractures may be due to impaired bone quality and extra-bone factors [1], the underlying mechanism has not been clearly determined, and there are few effective therapies for diabetic osteoporosis. It is of great significance to find clinically suitable indicators of osteoporosis for the early prevention and treatment of diabetic osteoporosis

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call