Abstract

Obesity is a key contributing factor to incidental type 2 diabetes and cardiovascular disease. CXCR3 receptor and its ligands CXCL 10 and 11 are associated with atherosclerosis and cardiovascular disease. The aim of our study was to analyse the role of the CXCR3 ligands on insulin resistance (IR) and endothelial dysfunction in human obesity. We have studied 45 obese patients (mean age 44±6years, body mass index 45±9kg/m2) who were selected for Roux-Y-gastric bypass surgery and 21 non obese control subjects with similar age and gender distribution. We measured by ELISA the circulating levels of the CXCR3 ligands interferon-γ inducible protein 10 (IP-10/CXCL10) and interferon-γ-inducible T-cell alpha chemoattractant (I-TAC/CXCL11). Using an ex vivo procedure with the flow chamber assay, we have investigated the effect of such chemokines on endothelial leukocytes arrest under dynamic conditions. Peripheral blood levels of CXCL10 and CXCL11 were significantly higher in obese subjects than in controls (p<0.001) and significantly correlated with BMI, waist circunference and HOMA-IR. Obese patients with HOMA-IR index above 75th percentile showed highest increase of circulating CXCL10 and CXCL11 values. Under dynamic flow conditions, the enhanced adhesion of patient leukocytes to TNFα-induced human arterial endothelial cells was partly dependent on CXCR3. The study demonstrates that CXCL10 and CXCL11 are associated with IR and enhance leukocyte endothelial arrest in obese subjects. Blockade of CXCR3 signaling might be a new therapeutic approach for the prevention of obesity-associated cardiovascular co-morbidities.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call