Abstract

Alterations in the lipid composition of lung microsomal membranes occur in oleic acid-induced respiratory distress. The marked decrease in the phosphatidylcholine/lysophosphatidylcholine molar ratio could be related with an altered metabolism of lysophosphatidylcholine in these membranes. Results revealed that the activity of phospholipase A increased whereas that of acyl-CoA:lysophosphatidylcholine acyltransferase decreased. Microsomal lysophospholipase activity remained unchanged. On the other hand, the microsomal enzyme system involved in the de novo synthesis of diacylglycerol was impaired, and cholinephosphotransferase activity was lowered. These changes in the activity of some membrane-bound enzymes were not caused by changes in the membrane lipid fluidity since lipid structural order parameter ( S DPH ) did not change and neither did the major factors on which the fluidity depends. The possible significance of microsomal lipid alterations in the pathogenesis of respiratory distress induced by oleic acid is discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.