Abstract

Cellular transformation to malignancy is a multifactorial process strongly linked with microbiome dysbiosis. The female reproductive tract (FRT) is inhabited by specific Lactobacillus spp which play a significant role in maintaining a homeostatic balance and providing resistance to perturbation. Any imbalance in the resident microbiota of the FRT results in cervicovaginal dysbiosis and increased predisposition to viral and bacterial infections. In the present review, we discuss the critical role played by the cervicovaginal microbiome in maintaining cervicovaginal homeostasis. Loss of the mutualistic relationship between cervicovaginal microbiota and the host leads to increased susceptibility to Human papilloma virus (HPV) infection. HPV in coinfection with Chlamydia trachomatis has been linked with increased risk for cellular transformation. The progression to cervical neoplasia is a multistep process regulated by cellular and epigenetic changes mediated by oncogenes and miRNA. Exosomes derived from the infected cells play an important role in the pathological development and progression to cervical neoplasia as they harbor the regulatory molecules like miRNA, proteins and prooncogenic factors which may facilitate cellular transformation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call