Abstract

BackgroundTumour growth in colorectal cancer and other solid cancers is frequently supported by activating mutations in the epidermal growth factor receptor (EGFR) signaling pathway (Patholog Res Int 2011:932932, 2011). Treatment of metastatic colorectal cancer with targeted anti-EGFR therapeutics such as cetuximab extends survival in only 25% of patients who test wild-type for KRAS, while the majority of patients prove resistant (J Clin Oncol 28(7):1254–1261, 2010).Prediction of cetuximab responsiveness for KRAS wild-type colorectal cancers is currently not well defined, and prognostic biomarkers would help tailor treatment to individual patients. Somatic mutation of the EGFR signalling pathway is a prevalent mechanism of resistance to cetuximab (Nature 486(7404):532–536, 2012). If the human genome harbours variants that influence susceptibility of the EGFR pathway to oncogenic mutation, such variants could also be prognostic for cetuximab responsiveness.MethodsWe assessed whether patient genetic variants may associate with somatic mutation of the EGFR signalling pathway. We combined tumour mutation data from the Cancer Genome Atlas with matched patient genetic data, and tested for germline variants that associate with somatic mutation of the EGFR pathway (including EGFR, KRAS, BRAF, PTEN and PIK3CA).ResultsTwo single nucleotide polymorphisms (SNPs) located 90 kb upstream of the TERT oncogene associated with somatic mutation of the EGFR pathway beyond the threshold of genome-wide significance: rs7736074 (P = 4.64 × 10-9) and rs4975596 (P = 5.69 × 10-9). We show that allelic variants of rs7736074 and rs4975596 modulate TERT expression levels in multiple cancer types, and exhibit preliminary prognostic value for response to cetuximab.ConclusionsWe have identified two germline SNPs that associate with somatic mutation of the EGFR pathway, and may be prognostic for cetuximab responsiveness. These variants could potentially contribute to a panel of prognostic biomarkers for assessing whether metastatic colorectal cancer patients are likely to derive benefit from cetuximab treatment. Genotyping of a large cohort of cetuximab-treated colorectal cancer patients is called for to further clarify the association.

Highlights

  • Tumour growth in colorectal cancer and other solid cancers is frequently supported by activating mutations in the epidermal growth factor receptor (EGFR) signaling pathway (Patholog Res Int 2011:932932, 2011)

  • Individual cancer types within The Cancer Genome Atlas (TCGA) comprise too few patients to attempt large scale association analysis, as somatic mutation of the EGFR pathway is a hallmark of multiple types of solid cancer types, we sought to maximize the power of our study by combining patients across multiple cancer types that exhibit high frequency of mutation in the EGFR pathway

  • As SNPs at this locus could potentially influence oncogenesis by modulating telomerase reverse transcriptase (TERT) expression, we examined whether rs7736074 and rs4975596 associate with TERT expression levels in colorectal adenocarcinoma (COAD), skin cutaneous melanoma (SKCM), thyroid carcinoma (THCA), uterine corpus endometrial carcinoma (UCEC), as well as for two subtypes of non-small cell lung cancer (NSCLC)

Read more

Summary

Introduction

Tumour growth in colorectal cancer and other solid cancers is frequently supported by activating mutations in the epidermal growth factor receptor (EGFR) signaling pathway (Patholog Res Int 2011:932932, 2011). Treatment of metastatic colorectal cancer with targeted anti-EGFR therapeutics such as cetuximab extends survival in only 25% of patients who test wild-type for KRAS, while the majority of patients prove resistant (J Clin Oncol 28(7):1254–1261, 2010). Prediction of cetuximab responsiveness for KRAS wild-type colorectal cancers is currently not well defined, and prognostic biomarkers would help tailor treatment to individual patients. If the human genome harbours variants that influence susceptibility of the EGFR pathway to oncogenic mutation, such variants could be prognostic for cetuximab responsiveness. The growth of solid tumours is frequently supported by aberrant expression of epidermal growth factor receptor (EGFR) or activating mutations in downstream signalling components [1].

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.