Abstract

IntroductionHomologous recombination (HR) DNA repair is of clinical relevance in breast cancer. Three DNA-based homologous recombination deficiency (HRD) scores (HRD-loss of heterozygosity score (LOH), HRD-telomeric allelic imbalance score (TAI), and HRD-large-scale state transition score (LST)) have been developed that are highly correlated with defects in BRCA1/2, and are associated with response to platinum therapy in triple negative breast and ovarian cancer. This study examines the frequency of BRCA1/2 defects among different breast cancer subtypes, and the ability of the HRD scores to identify breast tumors with defects in the homologous recombination DNA repair pathway.Methods215 breast tumors representing all ER/HER2 subtypes were obtained from commercial vendors. Next-generation sequencing based assays were used to generate genome wide SNP profiles, BRCA1/2 mutation screening, and BRCA1 promoter methylation data.ResultsBRCA1/2 deleterious mutations were observed in all breast cancer subtypes. BRCA1 promoter methylation was observed almost exclusively in triple negative breast cancer. BRCA1/2 deficient tumors were identified with BRCA1/2 mutations, or BRCA1 promoter methylation, and loss of the second allele of the affected gene. All three HRD scores were highly associated with BRCA1/2 deficiency (HRD-LOH: P = 1.3 × 10-17; HRD-TAI: P = 1.5 × 10-19; HRD-LST: P = 3.5 × 10-18). A combined score (HRD-mean) was calculated using the arithmetic mean of the three scores. In multivariable analyses the HRD-mean score captured significant BRCA1/2 deficiency information not captured by the three individual scores, or by clinical variables (P values for HRD-Mean adjusted for HRD-LOH: P = 1.4 × 10-8; HRD-TAI: P = 2.9 × 10-7; HRD-LST: P = 2.8 × 10-8; clinical variables: P = 1.2 × 10-16).ConclusionsThe HRD scores showed strong correlation with BRCA1/2 deficiency regardless of breast cancer subtype. The frequency of elevated scores suggests that a significant proportion of all breast tumor subtypes may carry defects in the homologous recombination DNA repair pathway. The HRD scores can be combined to produce a more robust predictor of HRD. The combination of a robust score, and the FFPE compatible assay described in this study, may facilitate use of agents targeting homologous recombination DNA repair in the clinical setting.Electronic supplementary materialThe online version of this article (doi:10.1186/s13058-014-0475-x) contains supplementary material, which is available to authorized users.

Highlights

  • Homologous recombination (HR) DNA repair is of clinical relevance in breast cancer

  • This study examines the frequency of BRCA1/2 defects and elevated scores across breast cancer subtypes, and examines the association of the homologous recombination deficiency (HRD)-LOH, homologous recombination deficiency–telomeric allelic imbalance (HRD-TAI), and HRD-LST scores with BRCA1/2 deficiency in breast tumors

  • Samples were selected at random from the inventory list provided by each vendor, with the exception that attempts were made to balance the number of samples from each breast cancer subtype as defined by estrogen receptor (ER) and tyrosine kinase-type cell surface receptor HER2 status

Read more

Summary

Introduction

Homologous recombination (HR) DNA repair is of clinical relevance in breast cancer. Three DNAbased homologous recombination deficiency (HRD) scores (HRD-loss of heterozygosity score (LOH), HRD-telomeric allelic imbalance score (TAI), and HRD-large-scale state transition score (LST)) have been developed that are highly correlated with defects in BRCA1/2, and are associated with response to platinum therapy in triple negative breast and ovarian cancer. Numerous studies have investigated the rate of BRCA1/2 mutations in triple-negative breast cancer (TNBC), with reported mutation rates ranging from 10 to 40% in this breast cancer subtype [3,4,5,6,7,8] Many of these studies, focused on select patient populations known to be enriched for BRCA1/2 mutations. Methylation of the BRCA1 promoter and associated loss of expression of the gene have been reported in approximately 25% of breast cancers, with the frequency in TNBC reported to be as high as 31% [9]. These studies suggest that the frequency of BRCA1/2 deficiency in TNBC is between 45 and 70%. Current clinical studies are focused on investigating TNBC for response to agents that are believed to exploit HR defects, including platinum agents and poly (ADP-ribose) polymerase inhibitors

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.