Abstract
Adenylyl cyclase (AC) generates cyclic AMP required for a variety of cellular functions, and its regulation plays a major role in cellular signal transduction in eukaryotes and prokaryotes. All membrane-bound AC isoforms in eukaryotes can be activated by stimulatory G-proteins, but only AC1, AC5, and AC6 can be both stimulated and inhibited by active Gα subunits, Gαs and Gαi, respectively. In principle, these Gαi-sensitive AC isoforms could form both binary and ternary complexes with Gα subunits due to the noncompetitive association of inhibitory and stimulatory Gα. However, the formation and possible catalytic activity of a putative ternary complex have not yet been experimentally confirmed due to its proposed short-lived nature. Here, the catalytic activity of such a ternary complex consisting of apo AC5, stimulatory Gαolf, and inhibitory Gαi1 is investigated via classical molecular dynamics simulations. Trajectories of inhibited and stimulated binary complexes, AC5:Gαi1 and AC5:Gαolf, respectively, as well as Gα-free AC5 were also obtained to compare the sampled AC5 conformation in the ternary complex to those sampled under different Gα conditions. This comparison suggests that association of both Gα subunits results in an AC5 conformation similar to that sampled by the AC5:Gαi1 complex, indicating that the ternary complex mainly samples an inactive conformation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.