Abstract

Background and Aims:Given choice, bacteria prefer a community-based, surface-bound colony to an individual existence. The inclination for bacteria to become surface bound is so ubiquitous in diverse ecosystems that it suggests a strong survival strategy and selective advantage for surface dwellers over their free-ranging counterparts. Virtually any surface, biotic or abiotic (animal, mineral, or vegetable) is suitable for bacterial colonization and biofilm formation. Thus, a biofilm is “a functional consortium of microorganisms organized within an extensive exopolymeric matrix.”Materials and Methods:The present study was undertaken to detect biofilm production from the repertoire stocks of Acinetobacter baumannii (A. baumannii) and Pseudomonas aeruginosa (P. aeruginosa) obtained from clinical specimens. The tube method was performed to qualitatively detect biofilm production.Results:A total of 109 isolates of both organisms were included in the study, out of which 42% (46/109) isolates showed biofilm detection. Among the biofilm producers, 57% of P. aeruginosa and 73% of A. baumannii showed multidrug resistance (MDR) pattern which was statistically significant in comparison to nonbiofilm producers (P < 0.001).Conclusion:To the best of our knowledge, this is the only study to have tested the biofilm production in both P. aeruginosa and A. baumannii in a single study. Biofilm production and MDR pattern were found to be significantly higher in A. baumannii than P. aeruginosa. Antibiotic resistance was significantly higher among biofilm producing P. aeruginosa than non producers. Similarly, antibiotic resistance was significantly higher among biofilm producing A. baumannii than non producers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call