Abstract

Plasmodium falciparum infections are serious in pregnant women, because VAR2CSA allows parasitized erythrocytes to sequester in the placenta, causing placental malaria (PM). In areas of endemicity, women have substantial malarial immunity prior to pregnancy, including antibodies to merozoite antigens, but produce antibodies to VAR2CSA only during pregnancy. The current study sought to determine the importance of antibodies to VAR2CSA and merozoite antigens in pregnant women in Yaoundé, Cameroon, where malaria transmission was relatively low. A total of 1,377 archival plasma samples collected at delivery were selected (at a 1:3 ratio of PM-positive [PM+] to PM-negative [PM-] women) and screened for antibodies to full-length VAR2CSA and 7 merozoite antigens. Results showed that many PM+ women and most PM- women lacked antibodies to VAR2CSA at delivery. Among PM+ women, antibodies to VAR2CSA were associated with a reduced risk of having high placental parasitemia (odds ratio [OR], 0.432; confidence interval [CI], 0.272, 0.687; P = 0.0004) and low-birth-weight (LBW) babies (OR = 0.444; CI, 0.247, 0.799; P = 0.0068), even during first pregnancies. Among antibodies to the 7 merozoite antigens, i.e., AMA1, EBA-175, MSP142, MSP2, MSP3, MSP11, and Pf41, only antibodies to MSP3, EBA-175, and Pf41 were associated with reduced risk for high placental parasitemias (P = 0.0389, 0.0291, and 0.0211, respectively) and antibodies to EBA-175 were associated with reduced risk of premature deliveries (P = 0.0211). However, after adjusting for multiple comparisons significance declined. Thus, in PM+ women, antibodies to VAR2CSA were associated with lower placental parasitemias and reduced prevalence of LBW babies in this low-transmission setting.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call