Abstract

Autoantibodies recognizing 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGCR) are associated with statin exposure, the HLA allele DRB1*11:01, and necrotizing muscle biopsies in adult myositis patients. The aim of this study was to characterize the features of juvenile anti-HMGCR-positive myositis patients. The sera of 440 juvenile myositis patients were screened for anti-HMGCR autoantibodies. Demographic and clinical features, responses to therapy, and HLA alleles were assessed. The features of anti-HMGCR-positive patients were compared to those of previously described adult patients with this autoantibody and to children with other myositis-specific autoantibodies (MSAs). Five of 440 patients (1.1%) were anti-HMGCR-positive; none had taken statin medications. Three patients had rashes characteristic of juvenile dermatomyositis and 2 patients had immune-mediated necrotizing myopathies. The median highest creatine kinase (CK) level of anti-HMGCR-positive subjects was 17,000 IU/liter. All patients had severe proximal muscle weakness, distal weakness, muscle atrophy, joint contractures, and arthralgias, which were all more prevalent in HMGCR-positive subjects compared to MSA-negative patients or those with other MSAs. Anti-HMGCR-positive patients had only partial responses to multiple immunosuppressive medications, and their disease often took a chronic course. The DRB1*07:01 allele was present in all 5 patients, compared to 26.25% of healthy controls (corrected P = 0.01); none of the 5 juvenile patients had DRB1*11:01. Compared to children with other MSAs, muscle disease appears to be more severe in those with anti-HMGCR autoantibodies. Like adults, children with anti-HMGCR autoantibodies have severe weakness and high CK levels. In contrast to adults, in anti-HMGCR-positive children, there is a strong association with HLA-DRB1*07:01.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.