Abstract

BackgroundA recent Genome-wide association meta-analysis (GWAS) of refractive error reported shared genetics with anthropometric traits such as height, BMI and obesity. To explore a potential relationship with refractive error and ocular structure we performed a life-course analysis including both maternal and child characteristics using data from the Avon Longitudinal Study of Parents and Children cohort.MethodsMeasures collected across the life-course were analysed to explore the association of height, weight, and BMI with refractive error and ocular biometric measures at age 15 years from 1613children. The outcome measures were the mean spherical equivalent (MSE) of refractive error (dioptres), axial length (AXL; mm), and radius of corneal curvature (RCC; mm). Potential confounding variables; maternal age at conception, maternal education level, parental socio-economic status, gestational age, breast-feeding, and gender were adjusted for within each multi-variable model.ResultsMaternal height was positively associated with teenage AXL (0.010 mm; 95% CI: 0.003, 0.017) and RCC (0.005 mm; 95% CI: 0.003, 0.007), increased maternal weight was positively associated with AXL (0.004 mm; 95% CI: 0.0001, 0.008). Birth length was associated with an increase in teenage AXL (0.067 mm; 95% CI: 0.032, 0.10) and flatter RCC (0.023 mm; 95% CI: 0.013, 0.034) and increasing birth weight was associated with flatter RCC (0.005 mm; 95% CI: 0.0003, 0.009). An increase in teenage height was associated with a lower MSE (− 0.007 D; 95% CI: − 0.013, − 0.001), an increase in AXL (0.021 mm; 95% CI: 0.015, 0.028) and flatter RCC (0.008 mm; 95% CI: 0.006, 0.010). Weight at 15 years was associated with an increase in AXL (0.005 mm; 95% CI: 0.001, 0.009).ConclusionsAt each life stage (pre-natal, birth, and teenage) height and weight, but not BMI, demonstrate an association with AXL and RCC measured at age 15 years. However, the negative association between refractive error and an increase in height was only present at the teenage life stage. Further research into the growth pattern of ocular structures and the development of refractive error over the life-course is required, particularly at the time of puberty.

Highlights

  • A recent Genome-wide association meta-analysis (GWAS) of refractive error reported shared genetics with anthropometric traits such as height, Body Mass Index (BMI) and obesity

  • Exposure variables We examined variables previously identified as potentially being associated with myopia: height [5, 8], weight [8] and BMI [8] were examined at three life stages: the prenatal period, birth, and at 15 years of age

  • Birth length was associated with an increase in teenage axial length (AXL) (0.067 mm; 95% Confidence Interval (CI): 0.032, 0.10) and flatter radius of corneal curvature (RCC) (0.023 mm; 95% CI: 0.013, 0.034) respectively

Read more

Summary

Introduction

A recent Genome-wide association meta-analysis (GWAS) of refractive error reported shared genetics with anthropometric traits such as height, BMI and obesity. To explore a potential relationship with refractive error and ocular structure we performed a life-course analysis including both maternal and child characteristics using data from the Avon Longitudinal Study of Parents and Children cohort. A recent Genome-wide association meta-analysis (GWAS) of refractive error investigated the overlap of genes identified in refractive error with other common traits and reported shared genetics with anthropometric traits such as height, BMI and obesity [8]. In order to explore a potential relationship between stature, refractive error and ocular structure we performed an analysis including both maternal and child characteristics across the lifecourse using data from the Avon Longitudinal Study of Parents and Children (ALSPAC) cohort [9, 10]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call