Abstract

A-kinase-anchoring protein (AKAP) 79/150 organizes a scaffold of cAMP-dependent protein kinase (PKA), protein kinase C (PKC), and protein phosphatase 2B/calcineurin that regulates phosphorylation pathways underlying neuronal long-term potentiation and long-term depression (LTD) synaptic plasticity. AKAP79/150 postsynaptic targeting requires three N-terminal basic domains that bind F-actin and acidic phospholipids. Here, we report a novel interaction of these domains with cadherin adhesion molecules that are linked to actin through beta-catenin (beta-cat) at neuronal synapses and epithelial adherens junctions. Mapping the AKAP binding site in cadherins identified overlap with beta-cat binding; however, no competition between AKAP and beta-cat binding to cadherins was detected in vitro. Accordingly, AKAP79/150 exhibited polarized localization with beta-cat and cadherins in epithelial cell lateral membranes, and beta-cat was present in AKAP-cadherin complexes isolated from epithelial cells, cultured neurons, and rat brain synaptic membranes. Inhibition of epithelial cell cadherin adhesion and actin polymerization redistributed intact AKAP-cadherin complexes from lateral membranes to intracellular compartments. In contrast, stimulation of neuronal pathways implicated in LTD that depolymerize postsynaptic F-actin disrupted AKAP-cadherin interactions and resulted in loss of the AKAP, but not cadherins, from synapses. This neuronal regulation of AKAP79/150 targeting to cadherins may be important in functional and structural synaptic modifications underlying plasticity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call