Abstract

BackgroundAnthropogenic air pollution has been implicated in aberrant changes of DNA methylation and homocysteine increase (>15μM/L). Folate (<3 ng/mL) and vitamin B12 (<220 pg/mL) deficiencies also reduce global DNA methylation via homocysteine increase. Although B-vitamin supplements can attenuate epigenetic effects of air pollution but such understanding in population-specific studies are lacking. Hence, the present study aims to understand the role of air pollution, homocysteine, and nutritional deficiencies on methylation.MethodsWe examined cross-sectionally, homocysteine, folate, vitamin B12 (chemiluminescence) and global DNA methylation (colorimetric ELISA Assay) among 274 and 270 individuals from low- and high- polluted areas, respectively, from a single Mendelian population. Global DNA methylation results were obtained on 254 and 258 samples from low- and high- polluted areas, respectively.ResultsSignificant decline in median global DNA methylation was seen as a result of air pollution [high-0.84 (0.37–1.97) vs. low-0.96 (0.45–2.75), p = 0.01]. High homocysteine in combination with air pollution significantly reduced global DNA methylation [high-0.71 (0.34–1.90) vs. low-0.93 (0.45–3.00), p = 0.003]. Folate deficient individuals in high polluted areas [high-0.70 (0.37–1.29) vs. low-1.21 (0.45–3.65)] showed significantly reduced global methylation levels (p = 0.007). In low polluted areas, despite folate deficiency, if normal vitamin B12 levels were maintained, global DNA methylation levels improved significantly [2.03 (0.60–5.24), p = 0.007]. Conversely, in high polluted areas despite vitamin B12 deficiency, if normal folate status was maintained, global DNA methylation status improved significantly [0.91 (0.36–1.63)] compared to vitamin B12 normal individuals [0.54 (0.26–1.13), p = 0.04].ConclusionsHigh homocysteine may aggravate the effects of air pollution on DNA methylation. Vitamin B12 in low-polluted and folate in high-polluted areas may be strong determinants for changes in DNA methylation levels. The effect of air pollution on methylation levels may be reduced through inclusion of dietary or supplemented B-vitamins. This may serve as public level approach in natural settings to prevent metabolic adversities at community level.

Highlights

  • Atmospheric pollution as a consequence of rising anthropogenic activities has long been associated to detrimental effects on health [1,2,3,4]

  • Significant decline in median global DNA methylation was seen as a result of air pollution [high-0.84 (0.37–1.97) vs. low-0.96 (0.45–2.75), p = 0.01]

  • High homocysteine may aggravate the effects of air pollution on DNA methylation

Read more

Summary

Background

Anthropogenic air pollution has been implicated in aberrant changes of DNA methylation and homocysteine increase (>15μM/L). Folate (

Methods
Results
Conclusions
Introduction
Discussion
Study design Study population

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.