Abstract

The COVID-19 pandemic has affected the world, leading to significant morbidity and mortality. Various meteorological parameters are considered essential for the viability and transmission of the virus. Multiple reports from various parts of the world suggest a correlation between the disease spread and air pollution severity. This study was carried out to identify the relationship between meteorological parameters, air pollution, and COVID-19 in New Delhi, one of the worst-affected states in India. We studied air pollution and meteorological parameters in New Delhi, India. We obtained data about COVID-19 occurrence, meteorological parameters, and air pollution indicators from various sources from April 1, 2020, until November 12, 2020. We performed correlational analysis and employed autoregressive distributed lag models to identify the relationship between COVID-19 cases, air pollution and meteorological parameters. We found a significant impact of particulate matter (PM) 2.5, PM10, and meteorological parameters on COVID-19. There was a significant positive correlation between daily COVID-19 cases and COVID-19-related deaths with PM2.5 and PM10 levels. Increasing temperature and wind speed were associated with a reduction in the number of cases, while increasing humidity was associated with increased cases. This study demonstrated a significant association between PM2.5 and PM10 and daily COVID-19 cases and COVID-19-related mortality. This knowledge will likely help us prepare well for the future and implement air pollution control measures for other airborne disease epidemics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call