Abstract

Ghrelin [acylated (AG) and nonacylated (NAG)] has been shown to play a pivotal role in the regulation of food intake and insulin sensitivity. It is presently unclear whether variation in insulin sensitivity is related to AG and NAG levels in obese individuals. To address this issue, we determined whether insulin-sensitive overweight or obese (ISO) and insulin-resistant overweight or obese (IRO) individuals display different total ghrelin (TotG), AG, and NAG profiles during a euglycemic/hyperinsulinemic clamp (EHC). Eighty-nine nondiabetic overweight and obese postmenopausal women underwent EHC to evaluate insulin sensitivity. Body composition and blood lipid profiles were assessed. Subjects within the highest tertile of insulin sensitivity were described as ISO (n = 31), whereas those within the lowest tertile of insulin sensitivity were considered as IRO (n = 29). Plasma TotG, AG, and NAG profiles were assessed by RIA at 0, 60, 160, 170, and 180 min during the EHC. TotG and NAG levels were significantly decreased for ISO and IRO individuals during the EHC, whereas only ISO subjects displayed a significant reduction of AG concentrations (P < 0.05). AG area under the curve value and the ratio of AG/NAG (fasting and area under the curve) were significantly decreased in ISO individuals. Furthermore, maximal reduction of TotG and AG concentrations was greater in ISO compared with IRO individuals (P < 0.05). Insulin sensitivity was significantly correlated with maximal reduction of TotG (r = 0.36; P < 0.01) and AG (r = 0.36; P < 0.05) concentrations. The dysregulation of ghrelin secretion profiles during EHC is associated with insulin resistance. AG may contribute to the variation of insulin sensitivity in overweight or obese postmenopausal women.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call