Abstract

Leprosy is a chronic inflammatory disease caused by Mycobacterium leprae that mainly affects the skin and peripheral nervous system, leading to a high disability rate and social stigma. Previous studies have shown a contribution of genes encoding products of the lectin pathway of complement in the modulation of the susceptibility to leprosy; however, the ficolin-3/FCN3 gene impact on leprosy is currently unknown. The aim of the present study was to investigate if FCN3 polymorphisms (rs532781899: g.1637delC, rs28362807: g.3524_3532insTATTTGGCC and rs4494157: g.4473C>A) and ficolin-3 serum levels play a role in the susceptibility to leprosy. We genotyped up to 190 leprosy patients (being 114 (60%) lepromatous), and up to 245 controls with sequence-specific PCR. We also measured protein levels using ELISA in 61 leprosy and 73 controls. FCN3 polymorphisms were not associated with disease, but ficolin-3 levels were higher in patients with FCN3 *2B1 (CinsA) haplotype (p = 0.032). Median concentration of ficolin-3 was higher in leprosy per se (26034 ng/mL, p = 0.005) and lepromatous patients (28295 ng/mL, p = 0.016) than controls (18231 ng/mL). In addition, high ficolin-3 levels (>33362 ng/mL) were more common in leprosy per se (34.4%) and in lepromatous patients (35.5%) than controls (19.2%; p = 0.045 and p = 0.047, respectively). Our results lead us to suggest that polymorphisms in the FCN3 gene cooperate to increase ficolin-3 concentration and that it might contribute to leprosy susceptibility by favoring M. leprae infection.

Highlights

  • Leprosy is a chronic infectious disease caused by Mycobacterium leprae that mainly affects the skin and peripheral nerves [1] and can cause progressive and permanent damage, if untreated

  • The molecular mechanisms of M. leprae infection and immune evasion are still poorly known, raising the need for studies that may contribute to a better understanding of leprosy etiology, as well as improvement in diagnosis and treatment

  • Ficolin-3 is a soluble molecule of the innate immune system that recognizes a wide range of pathogen-associated molecular patterns leading to complement activation and phagocytosis

Read more

Summary

Introduction

Leprosy is a chronic infectious disease caused by Mycobacterium leprae that mainly affects the skin and peripheral nerves [1] and can cause progressive and permanent damage, if untreated. Upon exposure to M. leprae, most individuals are intrinsically resistant to infection. Among those who are susceptible, infection may progresses to a wide spectrum of manifestations, with two polar forms: the tuberculoid leprosy and the lepromatous leprosy. Tuberculoid leprosy is characterized by strong cell-mediated immunity, type 1 cytokine profile, low bacillary load and localized lesions. Lepromatous leprosy is characterized by low cellular response, type 2 cytokine profile, high bacillary load and disseminated lesions [3]. There is enough evidence to suggest that susceptibility to leprosy and to different clinical manifestations is markedly influenced by host genetic factors [3,4,5,6]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.