Abstract
BackgroundBalkan Endemic Nephropathy (BEN) is late-onset kidney disease thought to arise from chronic exposure to aristolochic acid, a phytotoxin that contaminates wheat supplies in rural areas of Eastern Europe. It has recently been demonstrated that humans are capable of perceiving aristolochic acid at concentrations below 40 nM as the result of high-affinity interactions with the TAS2R43 bitter taste receptor. Further, TAS2R43 harbors high-frequency loss-of-function mutations resulting in 50-fold variability in perception. This suggests that genetic variation in TAS2R43 might affect susceptibility to BEN, with individuals carrying functional forms of the receptor being protected by an ability to detect tainted foods.MethodsTo determine whether genetic variation in TAS2R43 predicts BEN susceptibility, we examined genotype-phenotype associations in a case–control study. A cohort of 88 affected and 99 control subjects from western Bulgaria were genotyped with respect to two key missense variants and a polymorphic whole-gene deletion of TAS2R43 (W35S, H212R, and wt/Δ), which are known to affect taste sensitivity to aristolochic acid. Tests for association between haplotypes and BEN status were then performed.ResultsThree major TAS2R43 haplotypes observed in previous studies (TAS2R43-W35/H212, -S35/R212 and –Δ) were present at high frequencies (0.17, 0.36, and 0.47 respectively) in our sample, and a significant association between genotype and BEN status was present (P = 0.020; odds ratio 1.18). However, contrary to expectation, BEN was positively associated with TAS2R43-W35/H212, a highly responsive allele previously shown to confer elevated bitter sensitivity to aristolochic acid, which should drive aversion but might also affect absorption, altering toxin activation.ConclusionsOur findings are at strong odds with the prediction that carriers of functional alleles of TAS2R43 are protected from BEN by an ability to detect and avoid aristolochic acid exposure. Evidence for a positive association between high-sensitivity alleles and BEN status suggests instead that possession of toxin-responsive receptor variants may paradoxically increase vulnerability, possibly by shifting attractive responses associated with low-intensity bitter sensations. The broad-spectrum tuning of the ~25-member TAS2R family as a whole toward xenobiotics points to a potentially far-reaching relevance of bitter responses to exposure-related disease in both individuals and populations.
Highlights
Balkan Endemic Nephropathy (BEN) is late-onset kidney disease thought to arise from chronic exposure to aristolochic acid, a phytotoxin that contaminates wheat supplies in rural areas of Eastern Europe
It has been demonstrated that ability to perceive aristolochic acid is influenced by common functional mutations in TAS2R43 including two tightly linked amino acid variants, C104G/ S35W and A635G/H212R, and a whole-gene deletion, TAS2R43-Δ
While TAS2R43W35/H212 exhibits strong response to aristolochic acid in heterologous expression assays and is associated with low threshold detection, TAS2R43S35/R212 and TAS2R43-Δ exhibit weak or no response and are associated with high threshold. These findings have suggested that variation in TAS2R43 might affect susceptibility to BEN, with TAS2R43-W35/ H212 conferring protection by signaling aristolochic acid contamination in food
Summary
Balkan Endemic Nephropathy (BEN) is late-onset kidney disease thought to arise from chronic exposure to aristolochic acid, a phytotoxin that contaminates wheat supplies in rural areas of Eastern Europe. Numerous plant toxins are perceived as bitter, even at low concentrations, and it has long been hypothesized that bitter sensitivity serves as “toxin detector” that enables animals to identify and avoid dangerous foods [9]. The importance of this role declined in humans with the advent of technological innovations such as domestication and industrial processing. Specific instances of taste-toxin interaction, which are likely to be informative about both the underlying mechanisms and epidemiological consequences of exposure, remain poorly documented
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.