Abstract

Exposure to 1-bromopropane (1-BP) is an emerging environmental and health concern due to its increasing environmental prevalence. Although the health effects of 1-BP exposure have been under-recognized, current evidence suggests the possibility of adverse pulmonary health effects due to 1-BP exposure. However, the association between 1-BP exposure and asthma prevalence remains unclear. Thus, we aimed to examine the association between 1-BP exposure and asthma prevalence in the general population. Using nationally representative data, we explored the potential impacts of indoor air quality (IAQ)-related behavioral factors on the level of 1-BP exposure. This study included 1,506 adults from the 2020-2021 Korea National Health and Nutrition Examination Survey. The prevalence of asthma was based on self-reported physician-diagnosed asthma. Urinary N-acetyl-S-(n-propyl)-L-cysteine (BPMA) levels were measured as a biomarker of 1-BP exposure, using high-performance liquid chromatography-mass spectrometry. Multiple logistic regression models were performed to investigate the associations between urinary BPMA metabolite and asthma prevalence after adjusting for potential confounders. Log-linear multiple regression models were used to examine the association between IAQ-related behavior and urinary BPMA concentration. Forty-seven individuals with asthma and 1,459 without asthma were included. Individuals in the highest quartile of urinary BPMA concentration had a 2.9 times higher risk of asthma than those in the lowest quartile (odds ratio [OR]: 2.85, 95% confidence interval [CI]: 1.02-7.98). The combination of natural and mechanical ventilation was associated with a reduced urinary BPMA concentration. Our findings suggest that 1-BP exposure is associated with the prevalence of asthma in adults and revealed higher urinary levels of BPMA in our study population compared to those in other countries. Given the emerging importance of IAQ, actively managing and modifying behavioral patterns to reduce 1-BP exposure in indoor environments could substantially attenuate the risk of asthma-related to 1-BP exposure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call