Abstract

Alpha-synuclein (AS), a 140aa intrinsically disordered protein, self-associates into oligomeric forms and aggregates into amyloid fibrils in Parkinson's disease. Certain mutations affect these processes and accelerate disease pathogenesis. The physiological roles of AS are a matter of speculation. Membrane binding is undoubtedly involved and the protein acquires α-helical structure in the process (1).We have studied the thermodynamics and kinetics of AS-membrane association utilizing vesicles (SUVs) of differing composition. Functionally neutral single cysteine mutants of AS were labeled with a polarity sensitive excited-state intramolecular proton transfer (ESIPT) probe (MFE). Double cysteine mutants were labeled with a FRET pair (Alexa Fluor488, Alexa Fluor568) at a series of selected positions in the primary sequence. Kinetic studies were conducted by stopped-flow, using 5-20 nM protein concentrations and increasing levels of SUVs (generally 20-200 µM) Signal changes indicative of membrane association were observed: increased intensity and shape change of dual band ESIPT emission, and altered FRET with the Alexa dyes. The analysis revealed a two-step reaction sequence in the time range <10 s. We attribute the first step to binding, and from the dependence on lipid concentration determined the second order rate constants and corresponding spectroscopic parameters. The second concentration independent step (1-10 s range) presumably arises from conformational changes in the protein (α-helix formation) and its accommodation to or perturbation of the lipid microenvironment (ESIPT dye).Accompanying thermodynamic measurements led to estimates of dissociation constants as a function of membrane composition, charge, and shape (SUVs, LUVs). A new experimental protocol (slopes), implemented in a microplate reader, circumvented technical problems usually manifested in titrations of protein with lipid.[1] Pfefferkorn C M, Jiang, Lee J C (2012). Biophysics of α-synuclein membrane interactions. Biochim Biophys Acta1818:162-171.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.